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Abstract

Carrier mobility is one of the most important parameters affecting the I-V

characteristics of MOSFETs. Hence, accurate mobility models that account for all the

important scattering mechanisms are an essential requirement for predictive MOS device

simulation. This dissertation focuses on issues related to mobility modeling in MOSFETs

as they scale to deep submicron dimensions. A new physically-based mobility model for

two dimensional (2D) device simulation is presented that accurately models MOSFETs

for all channel lengths down to 0.25µm. Enhanced physical features of the new model

include terms for 2D Coulombic scattering and 2D accumulation-layer mobility.

As MOSFETs scale to shorter channel lengths, channel doping levels increase in

order to suppress undesirable short-channel effects such as punchthrough and drain-

induced barrier lowering (DIBL). One direct consequence of increased doping is enhanced

impurity scattering, the importance of which in scaled MOSFETs is established by

demonstrating its impact on critical design parameters such as threshold voltage and

off-state leakage current. An accurate model for impurity scattering has been developed

that, for the first time, properly accounts for 2D confinement and quantum mechanical

effects in the inversion layer. A systematic methodology for extracting Coulombic

mobility from I-V data is also presented. Based on this scheme, it is shown that in regimes

where three dimensional (3D) models grossly over-predict mobility, the new 2D model

demonstrates its broad applicability by accurately reproducing experimental results over a

wide range of channel dopings, substrate biases, and electron concentrations.

Traditionally, channel resistance has been the dominant factor limiting current

transport in MOSFETs. However, in deep submicron MOSFETs with lightly-doped drain

(LDD) structures, channel resistance has become comparable to the parasitic series

resistance, a major component of which comes from the accumulation layer in the LDD

region. A unified mobility model is presented that is applicable in both inversion and

accumulation layers. A systematic methodology is presented for the calibration and
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validation of the new model with experimental data. Broad applicability of the new model

is established with excellent agreement over a wide range of operating conditions

(subthreshold, linear, and saturation) for gate lengths ranging from 20.0µm down to

0.25µm.
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Chapter 1

Introduction

1.1 Motivation

As a result of MOS technology scaling over the last three decades, the complexity of

integrated circuits has increased tremendously from small-scale integration of a few

transistors on a silicon substrate to the ultra-large-scale integration (ULSI) of tens of

millions of transistors in today’s chips. The complexity associated with a ULSI circuit has

mandated the use of sophisticated computer-aided design (CAD) tools at all levels in the

design hierarchy — process, device, circuit, and system design respectively. It has been

recognized in recent years that the design of “integrated systems” (i.e. ULSI chips) would

entail a concurrent optimization of circuit architecture and device technology, which is

going to present new challenges for the CAD development community.

In previous chip generations, the circuit architecture was optimized independently of

technology. As a result, CAD tools were broadly divided into two categories:

electronic-design-automation (EDA) tools that included circuit and logic simulators,

layout editors, and logic synthesis tools primarily served the needs of the circuit and

system design community, whereas technology-CAD (TCAD) tools that included process

and device simulators were largely used by technologists. Regarding the use of tools, an

interesting distinction exists between the two communities. The circuit and system

designers rely heavily on the EDA tools for the design work since a system typically

involves a very large number of transistors. On the other hand, the use of TCAD tools by

the technologists has been limited, primarily because of its lack of predictivity, which

compels them to perform costly and time-consuming experiments to evaluate various
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technology options. For the most part, TCAD tools serve the purpose of providing insight

into complex process and device physics phenomena that is not possible through

experimentation alone.

However, the scenario changes in the design of integrated systems. Since, a

simultaneous optimization of circuit and technology is desired, coupled device and circuit

simulations would need to be performed, thus making the device simulators an integral

part of the optimization and design loop. Hence, it has become important more than ever

that the TCAD tools be as predictive as possible, since circuits and systems would have to

be designed based on the data supplied by process and device simulators.

Predicitivity of TCAD tools hinges on the accuracy of models involved. The

challenge facing TCAD tool developers is the formulation and efficient numerical

implementation of physically-based models that exhibit a high degree of predictivity. To

this end, this thesis attempts to improve the accuracy of MOSFET simulations by

considering the modeling of one of the most important parameters affecting its I-V

characteristics — mobility of electrons in MOS inversion and accumulation layers.

This thesis focuses on issues related to mobility modeling in MOSFETs as they scale

to deep submicron dimensions. The aim is to extend the applicability of existing mobility

models by incorporating new physical effects that arise due to the scaling of MOS devices.

In this regard, two particular issues — Coulombic scattering and LDD resistance — have

been identified that require further modeling work, and are briefly discussed below.

Scaling of MOSFETs to deep submicron dimensions mandates an increase in

channel doping levels to suppress undesirable short-channel effects. One direct

consequence of increased doping is enhanced impurity scattering, fundamental treatment

of which is currently lacking in MOS inversion layers. The first half of the thesis is

devoted to a thorough examination of 2D Coulombic scattering and how it needs to be

modeled in the context of moment-based device simulators.

Traditionally, channel resistance has been the dominant factor limiting current

transport in MOSFETs. As a consequence, mobility models existing in literature only

addressed scattering in MOS inversion layers. However, in deep submicron MOSFETs

with LDD structures, parasitic series resistance has become comparable to channel

resistance, because of which it has become imperative to accurately model the extrinsic

region of the device. Thus, the mobility model developed in the first half of the thesis for

inversion layer electrons is extended to accurately model the accumulation layer occurring
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in the extrinsic (parasitic) region of LDD MOSFETs.

1.2 Scope and Organization

Mobility models fall into one three broad categories: physically-based,

semi-empirical, and empirical. Physically-based models are those that are obtained from a

first-principles calculation, i.e. both the coefficients and the power dependencies

appearing in the model are obtained from a fundamental calculation. In practice,

physically-based models rarely agree with experimental data since considerable

simplifying assumptions are made in order to arrive at a closed form solution. Therefore,

to reconcile the model with experimental data, the coefficients appearing in the

physically-based model are allowed to vary from their original values. In this process the

power-law dependencies resulting from the first-principles calculation are preserved, and

the resulting model is termed as semi-empirical.

At the other end of the spectrum are empirically-based models in which the

power-law dependencies are also allowed to vary. Empirical models have less physical

content compared to the other two models, and also exhibit a narrower range of validity.

Empirical models are usually resorted to when the dependencies predicted by the

first-principles calculation do not allow a good fit between the experimental data and the

corresponding semi-empirical model.

The organization of this thesis is based on the following systematic methodology for

mobility modeling. The first step involves consideration of first principles calculation for

mobility. Then the coefficients appearing in the physically-based model are allowed to

vary in order to get a good fit between the model and experimental data. If this step is

successful, then the calibration procedure is complete, and the model is ready for

implementation in a device simulator. Otherwise, the power-law dependencies are also

allowed to vary until a good fit is obtained. In this case, the empirical model is then

implemented in the device simulator.

The objective of this thesis is to develop a semi-empirical model obtained from a

first-principles calculation. Since a first principles calculation is lacking for 2D Coulombic

scattering, it is discussed first. Chapter 2 provides the background material on the

calculation of mobility starting from the Boltzmann transport equation (BTE). The

machinery developed in Chapter 2 is then employed in Chapter 3 to calculate the
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two-dimensional Coulombic mobility in MOS inversion layers due to scattering with

channel impurities. Separate calculations are performed for screened and unscreened

Coulombic scattering. A systematic extraction technique is also proposed for the

extraction of unscreened Coulombic mobility from experimental data, which in the case of

screened Coulombic mobility is taken from the literature. On comparison with

experimental data, it is shown that the new 2D model exhibits better agreement than

existing models for 3D Coulombic scattering.

Chapter 4 is concerned with the semi-empirical modeling of the inversion layer.

Extraction of semi-empirical models for phonon and surface roughness scattering from

first principles calculations is outlined. Based on the first principles model for Coulombic

scattering presented in Chapter 3, an empirical model for 2D Coulombic scattering is

extracted. The resulting model containing terms for phonon, surface roughness, and

Coulombic scattering is shown to accurately model experimental data over a wide range

of technology and bias conditions expressed in the form of a generalized mobility curve.

Finally, in Chapter 5, the importance of modeling mobility in the accumulation layer

is presented in the context of trying to accurately simulate deep submicron LDD

MOSFETs. To this end, the semi-empirical model for inversion-layer electrons is extended

to model the accumulation layer, and a systematic technique is presented for the validation

and calibration of the new model. A striking feature of the new model is that it exhibits

excellent agreement over a wide range of bias conditions in MOSFETs whose channel

length ranges from 20µm to 0.25µm. Very high confidence is placed in the predictive

nature of the new model since the same parameter set matches experimental data over

such a broad range.

Chapter 6 summarizes the conclusions of this research and offers suggestions for

future work.
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Chapter 2

The Boltzmann
Transport Equation

2.1 Introduction

A “first principles” calculation of macroscopic transport parameters such as mobility

starts with a description of the state of the electron gas in microscopic terms, and then

proceeds through a set of simplifying assumptions to arrive at the macroscopic parameter

that describes the state of the gas as a whole. Quantum-mechanically, the microscopic

state of the electron gas is described in terms of a many-body wavefunction, whereas

classically, it is described by specifying the position and momentum of each particle. To

characterize the operation of a MOSFET, we are not so much interested in the behavior of

each and every electron, rather we are interested in their collective motion. Thus, the

objective of performing the first-principles calculation is to filter out the essential piece of

information from the detailed microscopic description of the electron gas.

If we consider the inversion layer to be a classical ensemble, then its microscopic

state can be deterministically described by specifying the position and momentum of each

electron. Due to our lack of knowledge concerning the initial conditions, we have to resort

to a probabilistic description of the electron gas, which involves an N-particle distribution

function that gives the joint probability of finding the N particles at their respective

locations r with their respective momenta p. This description is still very detailed, and if

we assume the interactions among the electrons to be weak, and the time scales under

consideration to be much larger than the interaction time between electrons, then the
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N-particle distribution function can be reduced to a single particle distribution function.

Thus, we postulate that under these simplifying assumptions, the single particle

distribution function f(r,p,t) describes the collective state of the electron gas. The

evolution of f(r,p,t) with time is governed by the Boltzmann transport equation (BTE)

which forms the cornerstone of semiclassical electron dynamics.

In this chapter, we present a methodology for calculating mobility µ from the

Boltzmann transport equation. The BTE is a complex integro-differential equation that is

based on both quantum-mechanical and classical laws of dynamics. As such, the BTE in

its original form does not yield a closed form solution for mobility, and simplifying

assumptions are necessary to make the solution tractable. A detailed discussion of the

assumptions made is presented in this chapter, which is organized into three main sections.

The first part, Section 2.2, deals with the derivation and simplification of the BTE.

Derivation of the classical part is discussed earlier on in Section 2.2, while Section 2.2.1 is

devoted to setting up the collision integral based on quantum mechanical principles.

Section 2.2.2 presents a very important simplification to the collision integral, known as

the relaxation time approximation (RTA). RTA permits us to calculate a closed form

expression for mobility. Because of its significance, it is important to know the conditions

under which the RTA is applicable. This forms the subject of discussion in Section 2.2.3.

Thus, by the end of Section 2.2, we have a simplified form of the BTE that permits us to

arrive at a closed form solution for mobility.

In Section 2.3, we discuss the approximations and outline the method for calculating

mobility from the BTE using the RTA. This section concludes with an expression for

mobility that has the relaxation time as a parameter.

Finally Section 2.4 discusses the quantum mechanical calculation of the relaxation

time from the scattering potential. This calculation is based on the Fermi’s golden rule that

is derived from first-order time-dependent perturbation theory.

Thus the methodology that is presented in this chapter allows one to calculate

mobility from a knowledge of the scattering potential. Calculation of the scattering

potential forms the subject of the next chapter in which we first calculate the scattering

potential for a screened two-dimensional Coulombic center, and then employ the

machinery developed in this chapter to calculate the Coulombic mobility from the

scattering potential.
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2.2 Boltzmann Transport Equation

The classical theory of transport processes is based on the Boltzmann transport

equation, which specifies the temporal evolution of the single-particle distribution

function f(r,p,t) in the six-dimensional phase space of Cartesian coordinates r and

momentum p , and it is defined by the relation

(2.1)

Since trajectories in phase space do not intersect, Liouville’s theorem states that the

probability density of points in phase space remains constant in time, provided there is no

scattering. Thus, in the 6 dimensional phase space [83]:

(2.2)

In the presence of scattering, the total rate of change of f(r,p,t) with time equals the rate of

scattering. Equation (2.2) thus transforms into:

(2.3)

Expanding the total derivative in equation (2.3) yields:

(2.4)

Equation (2.4) is the celebrated Boltzmann’s transport equation (BTE) [16], which finds

applications in diverse areas such as neutron transport in reactors, propagation of light

through stellar matter, plasma dynamics, rarified gas dynamics, and electron transport in

metals and semiconductors [17]. The rate of change of momentum  is equal to the

applied force F, and in the absence of a magnetic field, it is simply given by Lorentz’s law:

(2.5)

f r p,( ) drdp probability of finding a particle in drdp=

df r p t, ,( )
dt

------------------------- 0=

df r p t, ,( )
dt

-------------------------
f∂
t∂

---- 
 

coll
=

f∂
t∂

---- ṙ ∇ rf⋅ ṗ ∇ pf⋅+ +
f∂
t∂

---- 
 

coll
=

ṗ

ṗ F qE r t,( )= =
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The rate of change of distance with time  is equal to the group velocity of Bloch1

electrons [14]. Thus, the BTE for the Bloch electrons can be written as:

(2.6)

While the left hand side of equation (2.6) is a classical description of electron motion, the

collision term on the right side requires a quantum treatment, which we discuss next.

2.2.1 Treatment of the Scattering Term

Electrons in solids are commonly represented by wave packets, and according to

Heisenberg’s uncertainty principle, they have a certain amount of spread in both real and

momentum space. Typically, the extent of spread in real space is of the order of a few

lattice constants. Usually, the externally applied potentials vary over hundreds of lattice

constants, and to a very good approximation these potentials can be considered as constant

over the dimensions of a wave packet. In such a scenario, the interaction between the

electron and the external potential can be treated according to the classical laws of

dynamics. On the other hand, if the variation in potential is of the order of the spread of a

wavepacket, then this interaction needs to be treated quantum mechanically via the

single-electron Schrodinger’s equation.

Clearly, the periodic potential due to the atomic cores, i.e. the nuclei, varies on the

order of a lattice constant, and hence this interaction needs to be treated quantum

mechanically. When Schrodinger’s equation is solved with this periodic potential, one

finds that the electrons can be treated as “free” particles travelling with an effective mass

that is different from the free electron2 mass. The effective mass approximation fails if the

externally applied field varies very rapidly, since that field can no longer be treated in the

classical framework, and instead needs to be included in Schrodinger’s equation. Thus, for

the left hand side in equation (2.6) to be valid, the externally applied electric fields have to

vary slowly compared to the dimensions of a wavepacket, as illustrated in Figure 2.1 [14].

1. Electrons moving in a periodic potential and satisfying the single-electron Schrodinger’s equation
are known as Bloch electrons [14].

2. A free electron, by definition, is one that moves in a zero potential field.

ṙ

f∂
t∂

---- vg ∇ rf⋅ qE ∇ pf⋅+ +
f∂
t∂

---- 
 

coll
=
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However, when electrons scatter off an imperfection in a semiconductor, the spatial

extent of the interaction potential is of the same order of magnitude as the dimensions of a

wavepacket. That is why all collision events need to be considered quantum mechanically.

While the “free” flight of electrons between two collision events is treated classically, the

collision event itself is treated quantum mechanically.

In an effort to model the collision term, we examine in greater detail its role in the

BTE. The left hand side of equation (2.6) governs the evolution of the distribution

function f(r,p,t) with time at a point (r,p) in phase space due to externally applied forces,

whereas its right hand side accounts for the effect of random scattering events on f(r,p,t).

The various contributions are seen more clearly if equation (2.6) is rewritten as follows:

(2.7)

Then, the local rate of change of f(r,p,t) with time at a point (r,p) in phase space is given by

the sum of the three terms: the first term represents the effect of diffusion due to spatial

gradients in f(r,p,t); the second term represents the effect of drift due to the externally

applied field E, and the last term represents the effect of scattering events on f(r,p,t). These

wavelength of applied field

Profile of applied field

Profile of Electron wavepacket

Spread of
wavepacket

Lattice
Constant

Figure 2.1 Schematic view of the dimensions involved in semiclassical transport
[14].

r

f∂
t∂

---- vg ∇ rf⋅( )–= qE ∇ pf⋅( )–
f∂
t∂

---- 
 

coll
+
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various processes are depicted graphically in Figure 2.2.

If we consider a small volume in phase space centered around the point (r,p) (see

Figure 2.2), then some particles would be leaving this volume due to out-scattering, while

others would be entering it due to in-scattering. It should be noted that a scattering event

abruptly changes the momentum of the particle without changing its position. The net

effect of scattering on the number of particles in the volume element is simply the

difference between the number of in-scattered and out-scattered particles:

(2.8)

Since the details of the scattering event need to be treated quantum mechanically, the

In-scattering

Out-scattering

In-flow Out-flow
f(r).vg f(r+dr).vg

p

p+dp

r r+dr

In-flow

Out-flow
f(p+dp).qE

f(p).qE
r

p

Figure 2.2 A cell in two-dimensional phase space. The three processes, namely drift,
diffusion, and scattering, that affect the evolution of f(r,p,t) with time in phase space are
shown [15].

(Drift)

(Diffusion)

f∂
t∂

---- 
 

coll
In scattering rate( ) Out scattering rate( )–=

f∂
t∂

---- 
 

coll

in f∂
t∂

---- 
 

coll

out
–=
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electron is specified in terms of its Bloch wavefunction which is characterized by

quasi-continuous momentum eigenvalues p, or equivalently the wavevector k in

momentum space, where . In addition to the k vector, the Bloch wavefunction is

also characterized by a band index; however, this parameter would be ignored since it will

be assumed that scattering events are strictly intraband. Thus, Bloch wavefunctions take

on the following form [14]:

(2.9)

where u(r) is a periodic function such that u(r+R)=u(r), where R is the periodicity of the

lattice. An electron incident on a scattering center with wavevector ki would emerge with

wavevector kf , and if kf is different from ki , the electron is said to have been scattered,

while kf = ki implies that the electron emerges unscattered. Scattering centers typically

result from perturbations in the background electrostatic potential, and are characterized

by a scattering potential Vs(r,t). Scattering potential may be well localized in space, as in

Coulombic scattering, or it may extend throughout the crystal, as in phonon scattering. A

scattering event by a localized scattering potential is illustrated graphically in Figure 2.3.

Strictly speaking, we need to represent electrons by wavepackets instead of by

Eigen-wavefunctions as in equation (2.9), where the wavepackets are typically

constructed by combining Bloch wavefunctions whose k values span a certain range. For

instance, a wavepacket can be represented as:

k p h⁄=

ψk r( ) u r( ) e
i k r⋅( )

=

Vs(r,t)
ki

kf

(t=0)

(t → ∞)

Figure 2.3 Scattering of an electron from initial wavevector ki to final wavevector kf
by scattering potential Vs(r,t).
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(2.10)

where c(k,ko) is a function centered around ko, and goes to zero if k is far from ko. A

candidate function for instance could be a Gaussian distribution centered around ko.

The property of the wavepacket in equation (2.10) is that it is localized in space at

the expense of a spread in momentum space (i.e. this wavepacket does not have a

well-defined momentum). On the other hand, the Eigen-wavefunction in equation (2.9)

exhibits a definite momentum but is not localized in space, and thus not really

representative of an electron travelling in a solid. Nevertheless, we shall work with

Eigenfunctions as in equation (2.9) since it is too cumbersome to work with wavepackets.

In order to find the rate at which electrons scatter into or scatter out of an element in

phase space, we first need to know the probability per unit time, also known as the

transition rate S(k,k´), with which an electron in state ki would scatter to a state kf in unit

time. The probability that a scattering event does take place also depends upon the number

of electron present in the initial state and the availability of the final states. Pauli’s

exclusion principle for fermions (which includes electrons) prohibits more than two of

them from occupying the same eigenstate. Thus, an arbitrary number of electrons can not

occupy a given state even if one exists. Hence, the probability of scattering per unit time

from k to k´, also known as the scattering rate, is given by:

(2.11)

The probability per unit time that an electron initially in state k would scatter out to any

possible k state is known as the total scattering rate, and is obtained from equation (2.11)

by summing over all the possible final k´ vectors:

(2.12)

The summation over k space can be converted to integration in k space by introducing the

density of states in k space D(k)=V/(2π)3, where the number of k states in dk is D(k)dk,

and V is the volume of the crystal. Assuming that scattering does not flip spin, we get:

Ψ r t,( ) c k ko,( ) ψk r( ) e

i

h
---ε k( ) t–

kd

∞–

∞

∫=

P k k'→( ) S k k',( ) f k( ) 1 f k'( )–[ ]=

P k( ) S k k',( ) f k( ) 1 f k'( )–[ ]
k'
∑=



Chapter 2      The Boltzmann Transport Equation 13

(2.13)

Pout(k) thus corresponds to the probability of scattering out of state k in unit time, i.e.

 . Conversely, the scattering rate from k´ to k is given by:

(2.14)

and the total scattering rate into state k is given by:

(2.15)

Pin(k) thus corresponds to the probability of scattering into state k in unit time, i.e.

. Therefore, the net change in the distribution function due to

scattering is given by the difference Pin(k)-Pout(k):

(2.16)

Equation (2.16) is commonly known as the collision integral. S(k,k´) appearing in the

collision integral is obtained from the scattering potential Vs(r,t) via a

quantum-mechanical calculation which is outlined in greater detail in Section 2.4.

Replacing the right-hand side of the BTE in equation (2.6) with the collision integral, it

now reads:

(2.17)

Equation (2.17) is an integro-differential equation in f(r,p,t), and clearly simplifications are

required in order to make the solution tractable. In the next section, we discuss one such

Pout k( ) V

2π( ) 3
--------------- S k k',( ) f k( ) 1 f k'( )–[ ] k'd∫=

Pout k( ) f∂
f∂

---- 
 

coll

out
=

P k' k→( ) S k' k,( ) f k'( ) 1 f k( )–[ ]=

Pin k( ) V

2π( ) 3
--------------- S k' k,( ) f k'( ) 1 f k( )–[ ] k'd∫=

Pin k( ) f∂
f∂

---- 
 

coll

in
=

f∂
t∂

---- 
 

coll

V

8π3
--------- S k' k,( ) f k'( ) 1 f k( )–[ ] S k k',( ) f k( ) 1 f k'( )–[ ]–{ } k'd∫=

f∂
t∂

---- vg ∇ rf⋅ qE ∇ pf⋅+ +

V

8π3
--------- S k' k,( ) f k'( ) 1 f k( )–[ ] S k k',( ) f k( ) 1 f k'( )–[ ]–{ } k'd∫=
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simplification to the collision integral, known as the relaxation time approximation.

2.2.2 The Collision Integral in the Relaxation Time Approximation

The collision integral as it stands in equation (2.16) makes equation (2.17) a

complex integro-differential equation whose solution under the most general conditions is

not possible. In the relaxation time approximation (RTA), the collision integral is replaced

by an algebraic equation that involves a parameter known as the relaxation time τ :

(2.18)

where f is the distribution function that needs to be determined and fo is the equilibrium

distribution function (Maxwell-Boltzmann for non-degenerate gases and Fermi-Dirac for

degenerate gases). The physical interpretation of equation (2.18) is that the scattering rate

is proportional to the deviation from equilibrium f-fo, and inversely proportional to the

relaxation time (i.e. if τ is short, scattering rate would be high). Since scattering tends to

return a system to equilibrium, τ represents the characteristic time over which a system

relaxes back to equilibrium after an excitation has been removed. Since the RTA is a

useful approximation to the BTE, the next section critically examines the conditions under

which equation (2.18) is a valid approximation to the collision integral in equation (2.16).

2.2.3 Validity of the Relaxation Time Approximation

In Section 2.2.1, a formulation for  was presented (see equation (2.16))

that involved the quantum-mechanical entity S(k,k´). In Section 2.2.2, a relaxation time

approximation to the collision integral was postulated that would considerably simplify

solving the BTE. In this section, we discuss the conditions under which the RTA is valid

and also show how the relaxation time τ is calculated from the transition rate S(k,k´). In

Section 2.3 we will show how the calculation of mobility µ proceeds from the BTE once τ
is known. Finally, in Section 2.4, we outline the quantum-mechanical calculation of

S(k,k´) from first-order time-dependent perturbation theory.

We start by expressing the non-equilibrium distribution function f as the sum of a

symmetric and an asymmetric part:

f∂
t∂

---- 
 

coll

f fo–

τ
-----------–=

f∂ t∂⁄[ ] coll
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(2.19)

where fs is symmetric and fa is asymmetric in momentum. The benefit of splitting up f in

this way is that fs cannot cause any current flow due to its symmetrical nature, since there

are equal number of carriers moving in opposite directions. Hence, any contribution to

current would come from a non-zero fa . The collision integral can also be split up as:

(2.20)

The first simplification is to assume a non-degenerate semiconductor, i.e f << 1. Then all

the [1-f] terms appearing in the collision integral in equation (2.16) reduce to unity.

Hence, we get:

(2.21)

and

(2.22)

In equilibrium, fs = fo, and hence . Thus, from equation (2.21) we find

that at equilibrium, S(k´,k) = S(k,k´), i.e. forward and backward transitions occur with

equal probability1. Even under non-equilibrium conditions, if the applied fields are weak,

the deviation from equilibrium is small, and the principle of detailed balance remains

applicable. Moreover, fs ≈ fo under such conditions, and it is reasonable to assume that

. The collision term then reduces to:

(2.23)

1. Commonly known as the principle of detailed balance [18].

f fs fa+=

f∂
t∂

---- 
 

coll

fs∂
t∂

------ 
 

coll

fa∂
t∂

------- 
 

coll
+=

fs∂
t∂

------ 
 

coll

V

8π3
--------- S k' k,( ) fs k'( ) S k k',( ) fs k( )–{ } k'd∫=

fa∂
t∂

------- 
 

coll

V

8π3
--------- S k' k,( ) fa k'( ) S k k',( ) fa k( )–{ } k'd∫=

fs∂ t∂⁄[ ]
coll

0=

fs∂ t∂⁄[ ]
coll

0=

f∂
t∂

---- 
 

coll

V

8π3
--------- S k k',( ) fa k'( ) fa k( )–[ ] k'd∫=
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Equation (2.23) is still complicated because it is a functional of fa . We need to arrive at a

form for  that would make it proportional to fa , not a functional of fa .

Since integration in equation (2.23) is being carried over k´, we can rewrite it as follows:

(2.24)

If the first integral term on the right hand side of equation (2.24) vanishes, then the

collision term would become proportional to fa as desired. Since fa(k´) is an odd function

of k´, if S(k,k´) can be shown to be an even function of k´, then their product would be an

odd function of k´, and hence the integral would vanish when integrated over k´. S(k,k´)

gives the probability that an electron in state k would scatter to state k´. For Bloch

electrons, . Hence, a velocity-randomizing scattering event is one in which

an electron incident on the scattering center with velocity vi has an equal probability of

scattering off in any direction (i.e. S(k,k´)=S(k,-k´) which implies that k´ and -k´ are

equally probable final states). Thus, for a given value of k, all values of k´ are equally

probable, implying that S(k,k´) is an even function of k´. That is why velocity randomizing

collisions are also known as isotropic scattering events, since all angles after scattering are

equally probably — the direction of the final wavevector is independent of the direction of

the incident wavevector. Collisions with phonons are typically isotropic, whereas those

with Coulombic centers are not. Thus, for isotropic scattering, the collision integral takes

on the simple form:

(2.25)

Going back to the definition of the RTA in equation (2.18), we have:

(2.26)

Equating (2.25) and (2.26), the relationship between τ and S(k,k´) is then given by:

f∂ t∂⁄[ ] coll 0=

f∂
t∂

---- 
 

coll

V

8π3
--------- S k k ′,( ) fa k ′( ) k ′d∫ V

8π3
--------- fa k( ) S k k',( ) k'd∫–=

vg hk m∗⁄=

f∂
t∂

---- 
 

coll

V

8π3
---------– fa k( ) S k k',( ) k'd∫=

f∂
t∂

---- 
 

coll

f fo–

τ k( )
------------–

fa k( )
τ k( )

---------------–= =
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(2.27)

The fact that τ in equation (2.27) is independent of f implies that the collision integral in

equation (2.16) can be effectively reduced to the algebraic expression in equation (2.18).

The approximations and assumptions made in reducing equation (2.16) to equation (2.25)

are collectively referred to as the relaxation time approximation or RTA.

A velocity randomizing collision is not the only type of scattering event that is

compatible with the RTA. Here, we discuss another type of scattering event, namely an

elastic collision, that can treated in the RTA. For arbitrary electric field strengths, the

non-equilibrium distribution function f(k) can be expanded in a series of spherical

harmonic functions [41], [42]:

(2.28)

where θ is the angle between the electron wave vector k and the applied electric field, and

ε is the electron energy given by . The unknown functions fm(ε) need to

be solved for by substituting for f in the BTE. The rationale for this choice of expansion is

that the electric field is a symmetry-breaking operator that introduces a preferred axis (i.e.

the direction of the electric field) along which a shift of the distribution function occurs.

On the other hand, there is no breaking of symmetry in the azimuthal plane around the

electric field vector, so that the polar angle becomes a good expansion function for the

cylindrical symmetry of the problem. For low applied electric fields, the perturbation

would be weak, and thus the series may be terminated after the second term to give:

(2.29)

Thus, according to our definition, . Substituting for fa in

equation (2.23) gives:

(2.30)

1
τ k( )
------------

V

8π3
--------- S k k',( ) k'd∫=

f k( ) fm ε( ) Pm θcos( )
m 0=

∞

∑ fo ε( ) Po θcos( ) f1 ε( ) P1 θcos( ) . . .+ += =

ε hk( )
2

2m∗⁄=

f k( ) fo k θcos f1 ε( )⋅ ⋅+=

fa k( ) k θcos f1 ε( )⋅ ⋅=

f∂
t∂

---- 
 

coll

V

8π3
---------f1 ε( ) k θ S k k',( )

f1 ε'( ) k' θ'cos

f1 ε( ) k θcos
-------------------------------- 1– k'd∫cos=
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If scattering is elastic, then  and . Note that . Then equation (2.30)

reduces to:

(2.31)

Therefore, if we define relaxation time as

(2.32)

the collision integral takes on the familiar form  . Equation (2.32) can

be simplified further if we assume spherical bands. Figure 2.4 represents the coordinate

system illustrating a scattering event.  We are interested in finding the relationship among

α (the angle between k and k´), θ, and θ´ . Using the expression for dot product between

two vectors r1•r2=|r1| |r2| cos(θ), we get for cos(θ´):

ε' ε= k' k= k' k≠

f∂
t∂

---- 
 

coll

V

8π3
---------– fa k( ) S k k',( ) 1 θ'cos

θcos
-------------– k'd∫=

1
τ k( )
------------

V

8π3
--------- S k k',( ) 1 θ'cos

θcos
-------------– k'd∫=

f∂
t∂

---- 
 

coll

fa k( )
τ k( )
--------------–=

x

z

y

k

k´

E
θ

α

φ

k = k uz

k´ = k ( sinα cosφux + sinα sinφuy + cosα uz )

E = E ( sinθ uy + cosθ uz )

Figure 2.4 Coordinate system illustrating a scattering event. The incident carrier has
wavevector k, the scattered electron has wavevector k´, and the applied force is E.

θ´
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(2.33)

and hence,

(2.34)

For spherical bands, S(k,k´) is independent of φ; hence, sinφ would integrate to zero,

leaving the cosα term. Thus, relaxation time can be expressed more simply as:

(2.35)

In summary, the assumptions under which the relaxation time approximation holds are:

(1) Non-degenerate semiconductor.

(2) Low applied fields, i.e. carrier temperature ≈ lattice temperature.

(3) Deviation of the distribution function from equilibrium is small.

(4) Collisions are either velocity randomizing or elastic.

(5) If collisions are elastic, then energy bands must be spherical.

2.3 Calculation of Mobility from the BTE in the RTA

The relaxation time approximation to the collision integral allows us to solve for the

non-equilibrium distribution function f(r,k,t) for some special cases of interest. An

important parameter appearing in the solution f(r,k,t) is the relaxation time, which is

calculated from either equation (2.27) or (2.35) as discussed in the previous section.

Equations (2.27) and (2.35) in turn need to know the transition rate S(k,k´), which is

calculated quantum mechanically from first-order time-dependent perturbation theory. In

the next section, we show how S(k,k´) can be calculated if the nature of the interaction

between the electron and the scattering center is known.

Once f(r,k,t) is known, it is possible to calculate macroscopic transport coefficients

such as mobility and thermal conductivity. In this section, we show how the low-field

mobility is calculated from the BTE using the RTA.

E k'⋅
E k'
-------------- θ'cos θ α φsinsinsin θ αcoscos+= =

θ'cos
θcos

------------- θ α φsinsintan αcos+=

1
τ k( )
------------

V

8π3
--------- S k k',( ) 1 αcos–[ ] k'd∫=
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The expression for the convective current density1 vector is given by

(2.36)

where , and <v(r)> is the average velocity vector at point r. Since the

average is over the ensemble of particles, the average velocity is calculated by weighting

it with the non-equilibrium distribution function f(r,k,t). Therefore, in terms of the

distribution function, the expression for J takes on the following form:

(2.37)

where f(r,k,t)=fs(r,k,t)+fa(r,k,t) as given in equation (2.19). Since the symmetric part of the

distribution function does not contribute to current2, equation (2.37) reduces to:

(2.38)

In order to proceed with the calculation of J, we first need to evaluate the non-equilibrium

distribution function f(r,k,t) from the BTE using the RTA, which assumes the form:

(2.39)

In steady state, , and if we further assume a spatially homogeneous

semiconductor,  as well. The asymmetric part of the distribution fa is then given

by:

1. Convective current density is due to flow of particles. This is contrasted with the displacement
current density which is due to the rate of change of electric field with respect to time at a certain
point in space.

2. For the symmetric part of the distribution function, fs(r,k,t)=fs(r,-k,t); hence, there are as many
carrier moving to the right as there are to the left. Therefore, net movement of the carriers is zero.
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f∂ t∂⁄ 0=
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(2.40)

Relaxation time approximation holds under the condition that f should not deviate

significantly from fo. By replacing f by fo in the momentum-space gradient, and with a

change of variables, we get:

(2.41)

Therefore, fa takes on the following form:

(2.42)

Hence, J is now given by:

(2.43)

According to Ohm’s law, . In tensor form, J is given by:

(2.44)

Equating (2.43) and (2.44), we see that an entry in the conductivity tensor is given by:

(2.45)

For elastic scattering mechanisms |k|=|k´|, and hence the transition rate is independent of

the initial direction of the wavevector k since S(k,k´)=S(k-k´)=S(|k|,θ). Thus, τ(k) can be

expressed as τ(ε). Moreover, if the band structure is assumed to be isotropic, the
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conductivity tensor becomes diagonal [60]. Thus, any one component on the diagonal is

given by:

(2.46)

where i=x, y, or z, and µ is the mobility. Assuming Maxwell-Boltzmann statistics,

, which implies that . Given that the electron concentration

n can be written as:

(2.47)

the expression for mobility1 becomes:

(2.48)

Since we are dealing with an isotropic band structure, we can perform the integration over

the scalar ε instead of the vector k. For an isotropic band structure, the constant energy

surfaces are spherical, i.e. . The density of states in energy is defined as:

(2.49)

From the equipartition of energy, , and

1. In semiconductors, mobility is treated separately from conductivity since n can vary by orders of
magnitude in doped semiconductors, and µ can vary independently of n. However, in metals, n is
constant and very high, and conductivity is taken to be synonymous with mobility.
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. Changing the variable of integration from k to ε and

substituting for , the expression for mobility in equation (2.48) simplifies to:

(2.50)

Since , and in 3D, , the expression for mobility in

equation (2.50) becomes:

(2.51)

If we define , and are able to express τ(ε) as

(2.52)

then,

(2.53)

Now, , where  and .

Therefore, equation (2.53) can be rewritten as:
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(2.54)

Equation (2.54) specifies the relationship between the momentum relaxation time τ(ε) and

mobility µ. Momentum relaxation time when expressed as τ(ε) specifies the time it would

take for an electron with energy ε to randomize its initial momentum. Since electrons in a

system are distributed in energy, electrons with different energies would take different

times to randomize their initial momentum. Mobility can thus be viewed as being

proportional to the average time it takes the electron gas to randomize its initial

momentum.

In summary, starting with Boltzmann’s transport equation as given in equation

(2.17), the following assumptions and simplifications allow us to derive an expression for

low-field mobility:

(1) In the relaxation time approximation, the collision integral in equation (2.16)

can be reduced to the simplified form in equation (2.26) provided the collisions

are either elastic (as in Coulomb scattering) or velocity randomizing (as in

acoustic phonon scattering).

(2) An implicit assumption in the RTA is that the non-equilibrium distribution

function f is only slightly perturbed from the equilibrium distribution function

fo. Hence .

(3) Maxwell-Boltzmann statistics is assumed, which is consistent with the

assumption underlying the derivation of the BTE that the gas should be weakly

interacting. If the gas is dense, then due to strong interactions among the

particles, the single-electron distribution function f(r,p,t) loses its validity.

(4) Momentum relaxation time is assumed to be independent of the direction of the

wavevector of the incident electron. This can only be true if the scattering

event is elastic, i.e.  which implies that the

transition rate depends upon the speed with which the carriers approach the

scattering potential and the angle through which they are deflected. Under this

simplification, τ(k) can be written as τ(ε).

(5) The band structure is assumed to be spherical (i.e. isotropic) and parabolic.

The assumption of isotropy allows us to perform integrations over the scalar

µ
qτo

m∗
-------- Γ s 5 2⁄+( )

Γ 5 2⁄( )
-----------------------------⋅=

fk∇ fok∇≈

S k k ′,( ) S k k ′–( ) S k θ,( )= =
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quantity ε as opposed to the vector quantity k.

Thus, the calculation of mobility in equation (2.54) starting with the momentum

relaxation time τ(ε) is a purely classical calculation since it involves the use of the

classically-described distribution function f(r,k,t). Momentum relaxation time can be

calculated from either equation (2.27) or equation (2.35). In either case, we need to know

the transition rate S(k,k´) first, calculation of which is based on purely quantum

mechanical terms. We discuss this calculation in the next section. The mix of quantum and

classical calculations in calculating the macroscopic transport parameter mobility is what

makes this particular treatment semi-classical in nature.

2.4 Calculation of the Transition Rate
from Perturbation Theory

In this section, we draw the connection between the transition rate S(k,k´) and

scattering potential  which describes the potential field created by the scattering

center. It is the interaction of an electron with the scattering potential that is

phenomenologically known as an scattering event, and mathematically described through

time-dependent perturbation theory as we discuss next.

At the fundamental level, Schrodinger’s equation describes the interaction of the

electrons with various forces, or equivalently potential fields, appearing in the solid:

(2.55)

The crystal potential, , is periodic in nature and it describes the electrostatic

potential due to the atomic cores.  describes potentials that are built-in or applied

to the device, while  describes the scattering potential due to random deviations

in potential that may be caused by ionized impurities or lattice vibrations. As discussed in

Section 2.2.1, applied potentials are treated classically, and hence  need not be

considered in equation (2.55). Even with this simplification, it is not possible to solve

equation (2.55). We make another simplification by neglecting  under the

Vs r t,( )

ih
t∂

∂Ψ
Vc r( ) Va r t,( ) Vs r t,( )+ +[ ] Ψ h

2

2m
------- ∇ 2Ψ–=

Vc r( )
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Va r t,( )

Vs r t,( )
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assumption that it is much smaller than . The resulting equation yields the

well-known Bloch wavefunction as its solution, described by equation (2.9).

Since , it is treated as a small perturbation to . The effect of

such a perturbation is to cause an electron initially in Bloch state  to make a

transition to another Bloch state . The rate of transition S(k,k´) is given by the

Fermi’s Golden Rule [70] that is derived from first-order time-dependent perturbation

theory [70]:

(2.56)

The rate of transition quadratically depends upon how strongly the scattering potential Vs

couples the two Bloch states Ψi and Ψf . This coupling is expressed through the matrix

element <Ψf | Vs | Ψi >. The delta function appearing in equation (2.56) expresses the

conservation of energy during the scattering process.

The task that finally remains is identifying the nature of the scattering potential

Vs(r) . The discussion so far is applicable to all kinds of scattering mechanisms. However,

calculation of Vs(r) specifically depends upon the nature of the scattering process. In the

next chapter, we shall discuss in considerable detail how to set up Vs for a

two-dimensional Coulombic potential that is screened by a two-dimensional electron gas.

Once Vs has been calculated, we shall use the machinery developed in this chapter to

calculate the mobility for two-dimensional Coulombic scattering.

More commonly, the Fourier transform of the scattering potential Vs(q) is easier to

calculate than Vs(r) itself. As we shall show, it is not necessary to convert back to real

space r since we can very well work in its Fourier space representation.

When the matrix element  is expressed in the coordinate-space

representation, we get:

(2.57)

Vc r( )

Vs r t,( ) Vc r( )« Vc r( )
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The Fourier series expansion of Vs(r) is given by , where the

Fourier coefficients are given by . For Bloch electrons,

. Hence, equation (2.57) becomes [59]

(2.58)

Since the integral is zero except when , equation (2.58) simplifies to

(2.59)

For parabolic bands, ; hence, the overlap integral in equation (2.59)

reduces to unity, and we get

(2.60)

Therefore, calculation of the matrix element simply reduces to evaluating the Fourier

transform V(q) of the perturbing potential Vs(r), and equation (2.56) simplifies to:

(2.61)

2.5 Summary

In this chapter, we have presented a systematic treatment of the calculation of

mobility µ from the Boltzmann Transport Equation provided the scattering potential Vs(r)

is known. In the next chapter, we shall calculate Vs(r) for a screened two-dimensional

Coulombic potential, and make use of the methodology outlined in this chapter to

calculate the mobility associated with this scattering potential.
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We summarize here the mobility calculation methodology presented in this chapter.

Starting with a description of the scattering potential Vs(q), the transition rate S(k,k´) is

calculated according to Fermi’s golden rule as given in equation (2.61):

(2.61)

If the scattering mechanism is elastic, as in Coulombic scattering, then the momentum

relaxation τ(ε) is given by equation (2.35):

(2.35)

Expressing τ(ε) as , where s denotes the energy dependence of τ(ε), mobility µ

is given by equation (2.54):

(2.54)

It should be noted that the calculation methodology for mobility presented in this

chapter is semiclassical in nature: calculation of scattering potential and transition rate

invokes quantum mechanics, whereas calculation of momentum relaxation time and

mobility is based on classical laws.
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Chapter 3

Coulombic Scattering in
MOS Inversion Layers

3.1 Introduction

Design of low-power systems has gained considerable interest in recent years,

particularly for portable applications such as laptops computers and cellular phones. For

maximum savings in power dissipation with minimum impact on performance,

optimizations would have to be carried out at all levels in the design hierarchy — device,

circuit, system, and software [97]. To address the issue of power dissipation in today’s

ULSI chips, various technology options are being explored that would help minimize both

standby and active power dissipation without compromising the operating speed. One

such option is the design of low threshold devices with aggressively scaled Vdd [84].

Proper design and optimization of such devices requires accurate prediction of threshold

voltage (VT) and drain leakage current (Ioff), particularly since small changes in VT can

significantly alter Ioff . It is recognized that the I-V characteristics of a MOSFET in the

subthreshold region, and hence the calculation of VT , are severely affected by the

Coulombic scattering of inversion-layer electrons due to channel impurities [2]. This is

exacerbated in scaled devices, that tend to have high channel doping levels to prevent

undesirable short channel effects. However, what has been lacking is accurate

characterization and fundamental modeling of Coulombic scattering in the inversion layer.

In light of the above concerns, we present in this chapter a first-principles calculation

of Coulombic scattering in the quasi two-dimensional inversion layer. The objectives are
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two fold: (i) to formulate a closed-form (analytical) model for Coulombic scattering that

can be readily implemented in moment-based device simulators, and (ii) a

physically-based model is an essential requirement for predictive device simulation.

The organization of this chapter is as follows. In Section 3.2, we discuss the new

modeling approach and identify the deficiencies of existing models. There are two aspects

to Coulombic scattering: the screened and unscreened components. Unscreened

Coulombic scattering is due to a bare Coulombic potential which, if screened by free

carriers, results in screened Coulombic scattering. An important aspect of first-principles

modeling is the formulation of the scattering potential for both screened and unscreened

two-dimensional Coulombic charge effects. Once the scattering potentials have been

calculated, we then employ the methodology developed in the previous chapter to

calculate respective mobility terms from their scattering potentials. Section 3.2.1 is

devoted to the calculation of unscreened Coulombic scattering, and in Section 3.2.2,

screened Coulombic scattering is considered.

In Section 3.3, we test the accuracy of the new 2D model by comparing it with

experimental data obtained from the literature. The new model, properly accounting for

2D confinement and quantum mechanical effects, is shown to be in much better agreement

with experimental data compared to the 3D model by Brooks and Herring.

In Section 3.4, we investigate the effect of substrate bias on screened Coulombic

scattering. This experimental investigation confirms the hypothesis that Coulombic

scattering is a stronger function of electron density compared to the effective normal field

in the inversion layer. It will be seen in Chapter 4 that it is this property of Coulombic

scattering that causes marked deviations from the universal behavior of mobility [43].

In Section 3.5, we present a new systematic technique for extracting unscreened

Coulombic mobility from experimental data. Currently, techniques only exist for

extracting screened Coulombic mobility. We then present a comparison between the

extracted data and various models for unscreened Coulombic scattering, and show that our

new modeling approach yields better fits than 3D classical models previously published in

literature.

Finally in Section 3.6, we establish the importance of modeling Coulombic

scattering in MOS inversion layers by demonstrating its impact on critical design

parameters such as threshold voltage and off-state leakage current.
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3.2 New Modeling Approach

The scattering of inversion layer electrons by charge centers in its vicinity is

generically termed as Coulombic scattering. Possible sources of charge centers include

ionized impurities in the channel, interfacial charge, fixed oxide charge, and mobile oxide

charge. Since we shall only be concerned with modeling ionized impurity scattering, in

the ensuing discussion Coulombic scattering will be synonymous with impurity scattering.

The three parameters that affect impurity scattering in MOS inversion layers are

ionized impurity concentration, carrier density and temperature. Charge carriers respond

to an electrostatic potential in such a way as to always reduce its strength. This effect is

known as screening, and it is typically proportional to the density of mobile carriers. In the

limit of low carrier concentrations, scattering is essentially due to the bare Coulomb

potential and is termed as unscreened Coulombic scattering. With the increase of carrier

density in the inversion layer, Coulombic scattering makes a transition from the

unscreened to the screened regime.

From a physical stand point, since there is a smooth transition from one regime to

the next, one might expect that a single mathematical expression would be sufficient to

model both the regimes. However, such is not the case since a mathematical singularity

occurs if the carrier density is set to zero in the expression for screened Coulombic

scattering. As a result, a separate formulation is required for unscreened Coulombic

scattering.

Over the last three decades, Coulombic scattering has received scrutiny by both

theorists and experimentalists since it was recognized earlier on that ionized impurity

scattering would be a limiting factor in carrier transport in semiconductors. The earliest

theoretical works on Coulombic scattering include that of Brooks and Herring [13] and of

Conwell and Weisskopf [12]. Brooks and Herring computed the screened Coulombic

mobility of a three dimensional electron gas whereas Conwell and Weisskopf computed

the unscreened mobility. While these 3D models were expressed in closed form, and

hence suitable for implementation in a 2D device simulator, they did not accurately model

Coulombic scattering in MOS inversion layers, as will be shown in Sections 3.3 and 3.5.

Thus, what we need to consider are analytical models formulated for a two-dimensional

electron gas.

With the emerging interest in MOS systems, several works appeared on Coulombic
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scattering in a two-dimensional electron gas. The seminal paper on this subject by Stern

and Howard [8] presented a theoretical treatment of Coulombic scattering in MOS

inversion layers assuming that only the lowest sub-band (i.e. the ground state) was

occupied. Since the treatment was quite rigorous, they were unable to arrive at a closed

form solution for mobility. Instead, the results were obtained through numerical

integration for very low temperature cases. The objective here is in achieving a closed

form solution for mobility, applicable at room temperature, that can be implemented in a

moment-based device simulator such as PISCES [54].

Following the work of Stern and Howard [8], Sah et. al. [47] calculated a

closed-form solution for unscreened Coulombic mobility in MOS inversion layers.

However, this work only considered the scattering of electrons by fixed oxide charges,

which at that time was the dominant source of Coulombic scattering. However, significant

advances in MOS processing technology have led to a considerable reduction of

interfacial and oxide charges in modern day MOSFETs. Instead, now the dominant source

of Coulombic scattering in the inversion layer is due to ionized impurities in the channel

[1] whose concentration, as a result of device scaling, continues to increase in an effort to

suppress short channel effects such as punchthrough and drain-induced-barrier lowering.

Subsequently, Ning and Sah [98] expanded on their earlier work of Sah [47] and

included screening among other effects in their calculation. However, this work still

concentrated on Coulombic scattering due to oxide charges. Based on current needs,

interest has now shifted to the study of Coulombic scattering due to channel dopants.

Other works have appeared in literature that have treated impurity scattering in a

quantum well [100]-[104] instead of an MOS inversion layer. While the structure is

different, the problem is essentially similar since in both cases the electron gas behaves as

a quasi two-dimensional system. However, the major shortcoming with these analyses is

that they treat Coulombic scattering only in the low-temperature limit.

Recently, a comprehensive account of Coulombic scattering has been presented by

Gamiz et. al. [99]. Due to the completeness and complexity of their treatment, they are

only able to calculate the mobility numerically. Such a model however is not suitable for

implementation in a drift-diffusion device simulator.

In direct support of creating a mobility model for Coulombic scattering that can be

implemented in a device simulator requires the following features:

(1) The model should be analytical — expressed in closed-form.
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(2) The model should consider Coulombic scattering due to channel dopants.

(3) The model should be applicable at room temperature.

Since none of the previous works provide a model that possess the features

mentioned above, our objective in performing a first-principles calculation of Coulombic

scattering is to arrive at a model that would exhibit all these three features. Since screened

scattering logically follows unscreened scattering, we first present a calculation for

unscreened Coulombic scattering in Section 3.2.1 followed by a calculation for screened

Coulombic scattering in Section 3.2.2.

3.2.1 Unscreened Coulombic Scattering

In this section, we shall compute the mobility due to unscreened Coulombic

scattering. In computing this mobility, we will ignore the screening effect due to the

electron gas which will be taken up in the next section. Assume that the electron gas can

move in the x-y plane and is confined in the z direction1. Electrons are considered confined

or quantized if their deBroglie wavelength is larger than or comparable to the width of the

confining potential. The deBroglie wavelength of electrons, given by , is

approximately 150Å at room temperature, whereas the thickness of the inversion layer is

typically around 50Å to 100Å. Thus, we are justified in treating the inversion layer as a

two dimensional electron gas. However, due to its finite extension in the z direction, the

inversion layer is considered as a quasi 2D as opposed to a strictly 2D gas. As we shall

see, the finite extension of the inversion layer in the z direction leads to further complexity

in our analysis of Coulombic scattering.

The Coulomb potential due to a charge center located at (ri, zi) in the semiconductor

is given by [8]

(3.1)

1. z = 0 corresponds the Si/SiO2 interface. z > 0 is in silicon whereas z < 0 is in the oxide.
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where κsi and κox is the dielectric constant of silicon and oxide respectively, and εo is the

permittivity of free space. The first term on the right hand side of equation (3.1)

corresponds to the direct interaction between the electron at (r, z) and the charge center at

(ri, zi), whereas the second term corresponds to the interaction between the electron and

the charge center’s image at (ri, -zi). The image charge is a result of the differing dielectric

constants of oxide and silicon.

Since inversion layer electrons are restricted to move in the x-y plane, they would

only scatter off potential perturbations that they see in the x-y plane. Therefore, we are

only interested in determining the potential variations along that plane. To do so, we need

to calculate the two dimensional Fourier transform of the potential appearing in equation

(3.1), where the result is given by [8]

(3.2)

where  and the form factor F(q, zi) accounts for the separation zi

between the impurity layer and the electron gas and also for the finite extension of the

electron gas in the z dimension. Considering that the wavefunction of inversion-layer

electrons in the ground state is given by , where  is the envelope

function, F(q, zi) is also given by [8]

(3.3)

The form factor appearing in equation (3.3) is complex enough that it does not

permit a closed form solution for mobility. In order to make the solution tractable, we

assume the inversion layer to be infinitesimally thin, i.e. . In this strictly

two dimensional limit, equation (3.3) simplifies to

(3.4)

Inserting V(q) from equation (3.2) into (2.61), the transition rate S(q,zi) takes the
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following form:

(3.5)

The transition rate given in equation (3.5) is due to a sheet of impurity atoms located

at a distance zi from the electron gas. Since, the impurity atoms are distributed in a three

dimensional space underneath the interface, we need to sum the contribution due to each

sheet of impurity atoms. If this distribution is given by N(z), then the total transition rate

S(q) is given by

(3.6)

In an attempt to arrive at a closed form solution, we assume that scattering is

primarily due to a two-dimensional sheet of charge located at the interface, i.e.

N(z) = N2D δ(z). In modern submicron MOSFETs, the channel region is typically doped

more heavily than the substrate to suppress drain-induced-barrier lowering (DIBL) and

surface punchthrough effects. Thus, it is reasonable to assume that impurity scattering is

primarily due to dopants that are situated near the interface. With this assumption,

equation (3.6) reduces to

(3.7)

Since, Coulombic scattering is an elastic scattering mechanism, the scattering rate or

equivalently the inverse of the momentum relaxation time is calculated according to

equation (2.35) :

(3.8)

where k is the wavevector in the x-y plane, and in 2D . The relationship

between k, θ, and q for elastic scattering is illustrated in Fig. 3.1 In light of this
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relationship, equation (3.8) can be transformed to

(3.9)

For spherical parabolic bands, , and the transformation

 simplifies the integral in equation (3.9) with the delta function to

. Thus, the expression for momentum relaxation simplifies to :

(3.10)

Mobility is calculated according to equation (2.54), and with the energy dependence

of τm equal to unity, s equals 1 in equation (2.52). Hence, mobility due to unscreened

Coulombic scattering is given by

Figure 3.1 Relationship among the various variables in elastic scattering.

kikf
θ

q

In elastic scattering, |kf | = |ki |

According to the law of cosines,

q2 = k2 + k2 - 2k2 cosθ

= k2 [ 2 - 2 cosθ ]

= 4k2 sin2(θ/2)

∴ q = 2 k sin(θ/2)

1
τm
------

N2D

2πh
---------- e

2

2κ̃ εo

------------
 
 
  2

1
k
--- δ ε k ′( ) ε k( )–[ ] kd∫ 

  1
2
--- θd

o

π

∫ 
 
 

=

ε hk( )2 2m∗( )⁄=

dk m∗ h
2
k⁄ dε=

m∗ hk( )2⁄

τm ε( )
32h κ̃ εo( )2 kT( )

e
4
N2D

----------------------------------------- ε
kT
------ 

 =



Chapter 3      Coulombic Scattering in MOS Inversion Layers 37

(3.11)

3.2.2 Screened Coulombic Scattering

Having calculated the expression for unscreened mobility in the previous section, we

now consider the effect of screening due to inversion layer electrons on Coulombic

scattering. Screening is actually a many-body phenomena since it involves the collective

motion of the electron gas. To keep the analysis simple, we shall consider screening only

in the context of the linear response theory, wherein applied fields are treated as small

perturbations to which the response of the electron gas is assumed linear. We consider a

free electron gas that is subjected to a perturbation that varies in both space and time.

Suppose that the potential seen by an electron at r and at time t is given by

(3.12)

This externally applied potential gives rise to a fluctuation in electron density that obeys

the same dependence in space and time :

(3.13)

According to Poisson’s equation, the induced charge density results in an induced

potential Vind (r,t) with the same q and ω dependence :

(3.14)

In the random phase approximation [105], the electrons respond linearly to the effective

potential Veff , which is given by the sum of Vext and Vind . Thus, we have

(3.15)

where χ(q,ω) is known as the screened response function [86]. From equations (3.14) and

(3.15), we get the following relationship between Vext and Veff  for a two-dimensional
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electron gas [86] :

(3.16)

If we define

(3.17)

where ε(q,ω) is the longitudinal dielectric function of the electron gas [87], then

(3.18)

where Vext (q) is the 2D Fourier transform of the 3D Coulomb potential

[86]. The interaction potential between two inversion-layer electrons is given by [8], [88] :

(3.19)

where  and F(q) is the form factor accounting for the finite width of

the inversion layer. Neglecting the potential due to image charges [8], the form factor is

given by

(3.20)

where ζo(z) is the ground-state envelope function. To keep the analysis tractable, we

assume that the inversion layer has an infinitesimal thickness, i.e. . Under

this assumption,  and we get

. (3.21)
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In the random phase approximation, the screened response function is given by the

Lindhard function [86], [88]:

(3.22)

where α accounts for the dissipative part of the carrier-carrier interaction [41]. Typically it

has a small effect, and hence we shall neglect it in our analysis. Since the potential due to

an ionized impurity atom does not vary with time, we only need to compute the screened

response function in the static limit, i.e. . Also Coulombic scattering is

non-isotropic in nature and it tends to deflect carriers through small angles. Finally,

, and since θ is assumed to be small, it is reasonable to assume that

. With this assumption, we get the following pair of simplifications :

(3.23)

(3.24)

With the help of equation (3.23) and (3.24), the expression for the screened response

function in equation (3.22) simplifies to :

(3.25)

Assuming Maxwell-Boltzmann statistics,  which implies .

Hence, χ(q) in equation (3.25) transforms to . Since, f (r, k)

corresponds to the probability of finding an electron at r with momentum k, if we perform

the summation over all k, we simply get the 2D electron density Ninv at point r, where r is

a vector in the x-y plane of the inversion layer. Thus, the expression for the screened

response function becomes :
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(3.26)

Substituting for χ in the expression for the dielectric function in equation (3.18), and using

the expression for Vext from equation (3.21), we get for ε(q) the following:

(3.27)

If we define the inverse screening length qd in the inversion layer as

(3.28)

then the dielectric function ε(q) for a 2D electron gas can be rewritten as :

(3.29)

In contrast, the dielectric function for a 3D gas is given by .

Now that the dielectric function for the 2D electron gas has been computed, we

proceed to compute the screened Coulombic potential in the inversion layer. Combining

equations (3.17), (3.21), and (3.29), the expression for screened Coulombic scattering is

given by :

(3.30)

To obtain the transition rate for screened Coulombic scattering, we replace the

unscreened Coulombic potential in equation (3.7) with Veff (q) given in equation (3.30) to

obtain :
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(3.31)

As in the case for unscreened Coulombic scattering, screened scattering is assumed to be

predominantly due to a sheet of impurity atoms located near the interface.

Due to the elastic nature of Coulombic scattering, its scattering rate ought to be

calculated according to equation (2.35). However, in trying to calculate the elastic

scattering rate (i.e. 1/τm ) we find that the resulting integral  does

not permit a closed-form solution. We instead find that such a solution exists for the

isotropic scattering rate (also defined as the inverse of the single-particle relaxation time

τs) as given in equation (2.27). While unscreened and weakly screened Coulombic

potentials lead to non-isotropic scattering, moderately and strongly screened potentials

result in isotropic scattering [15]. It has also been experimentally observed that in a silicon

MOSFET, momentum relaxation and single-particle relaxation times are nearly equal

[89], [90]. Hence, it is a reasonable approximation to calculate screened Coulombic

mobility based on the single-particle relaxation time as opposed to the momentum

relaxation time. The isotropic scattering rate, defined in equation (2.27), is given by :

(3.32)

With , dk = k dk dθ, and , equation (3.32)

simplifies to :

(3.33)

If we define , and represent the integral in equation (3.33) by F(α), then F(α)

is given by :
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(3.34)

The energy dependence of the scattering rate in equation (3.33) is equal to unity. Thus,

according to equation (2.54), mobility due to screened Coulombic scattering is given by :

(3.35)

where F(α) is given by equation (3.34). α is evaluated at  [15], and

hence we get:

(3.36)

At room temperature, , and hence for Ninv varying between  and

, α is 0.1 or smaller. From equation (3.34), we see that for small α,

. Thus, over this range of Ninv , .

3.3 Comparison with Experimental data

The first experimental investigation of Coulombic scattering due to ionized impurity

atoms in the channel was reported by Takagi et. al. [9], [10]. However, Takagi’s extraction

technique, based on the split C-V method [75], restricted him to study only the screened

aspect of Coulombic scattering. Since Takagi’s first results on Coulombic scattering, other

works have appeared in the literature [78], [80] that support the original findings.

Moreover, improved techniques have been proposed for extracting Coulombic scattering

[91], [92].

In an attempt to model screened Coulombic scattering in MOS inversion layers,

consistent with 2D device simulation, researchers [80] have examined existing models in
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the literature that were originally formulated in closed form. The premier analytical model

based on a first-principles calculation was first proposed by Brooks and Herring [13] who

had treated screened Coulombic scattering in a three dimensional electron gas. However,

it was noted by Shin et. al. [80] that the Brooks-Herring model did not provide good

agreement with Takagi’s [9] experimental data for 2D screened Coulombic scattering.

Shin’s solution to this problem was to introduce sufficient number of calibrating

parameters to fit the model and data. In doing so however, there still exists a fundamental

deficiency in Shin’s model since it was not obtained from a first-principles calculation of

2D Coulombic scattering. The first principles calculation presented in Section 3.2 is an

attempt to more accurately model 2D Coulombic scattering, and in doing so, fewer

calibrating parameters are needed to fit the model with experimental data.

As a demonstration of the success of the new modeling effort, Fig. 3.2 presents a

comparison between the Brooks-Herring model, the new 2D model for screened

Coulombic scattering (specified by equations (3.34)-(3.36) ), and experimental data1 by

Takagi et. al. [9]. It should be emphasized that in presenting the comparison in Fig. 3.2, no

calibrating parameters have been introduced in either the Brooks-Herring model or the

new 2D model. For the Brooks-Herring model, one can observe that both the magnitude of

mobility and its dependence on Ninv do not agree with experimental data. While the new

model does not predict the magnitude of mobility correctly, it does capture the Ninv

dependence with great accuracy.

From Fig. 3.2, we note that Brooks-Herring model exhibits a super-linear

dependence on Ninv whereas the new 2D model exhibits a linear dependence. This

behavior, which results from fact that screening in 3D is stronger than in 2D [85], can be

explained as follows. Imagine a point charge (whose electric field lines emanate in all

three dimensions) which is immersed in an electron gas whose movement is confined to a

plane. This 2D electron gas would be able to effectively screen only those field lines that

lie within its plane, whereas the field lines that are perpendicular to the plane of the

electron gas would be poorly screened. On the other hand, an electron gas that can freely

move in all three dimensions would be able to screen field lines in all three dimensions. As

a result, 3D electrons screen Coulomb potentials better than 2D electrons.

Due to the nature of first-principles calculations, it is not expected that the new 2D

1. extraction of screened Coulombic scattering from experimental data is discussed in Section 3.5.
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model would correctly predict both the magnitude as well as the screening dependence,

since a series of simplifying assumptions have to be made to render the solution possible.

In light of this fact, the screening dependence correctly predicted by the new model when

the 3D model could not certainly implies that the inversion layer should be treated as a 2D

gas. The major benefit of this new model, as we have already stated, is that only one

calibrating parameter in the form of a pre-factor is required to achieve complete

agreement with the experimental data. This, however, can not be said for the

Brook-Herrings model since its screening dependence also needs to be “corrected” in

order to match it with experimental data.
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Figure 3.2 Comparison between Brooks-Herring model, the new 2D model,
and Takagi et. al.’s experimental data [9]. Mobility is higher in 3D compared to
2D because of stronger screening [85], which results from the fact that field
lines emanating in 3D can never be completely screened in 2D.
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The calibrated model  is given by , where k is the calibrating

parameter and µscreened is given by equation (3.35). Broad applicability of the new

calibrated model is demonstrated in Fig. 3.3 which exhibits excellent agreement between

the new model and experimental data over a wide range of channel doping values. It may

be noted from Fig. 3.3 that the fit for the lowest doping case is not as good as for the

higher doped cases. This has to do with the fact that the model for screened Coulombic

scattering was derived for a strictly two-dimensional gas. For the higher doped cases, the

potential well in the inversion layer is steep, leading to strong quantization. Hence, the

assumption of two-dimensionality holds quite well for the higher doped cases. For the

lower doped cases, the potential well is fairly shallow, and quantization is weak. Thus, a

µ̃screened k µscreened⋅

Figure 3.3 Broad applicability of the new model, fitted with one calibrating
parameter, is demonstrated by comparing it with experimental data over a
wide range of channel doping levels and electron densities.
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strictly 2D model for the electron gas is a poor approximation for low doped substrates.

3.4 Substrate Bias Dependence

One aspect of Coulombic scattering that distinguishes it from phonon and surface

roughness scattering in the inversion layer is that Coulomb scattering is a function of Ninv

whereas the latter two are functions of the effective electric field Eeff which is defined as

[43]:

(3.37)

In order to express Eeff in terms of terminal voltages, use of the following relations is

made ([93]) : , , and

, where . Thus, Eeff is given by:

(3.38)

Both phonon and surface-roughness mobility decrease with increasing Eeff [43].

Thus, according to equation (3.38), increasing either VGS or VSB would increase Eeff ,

which would cause phonon and surface roughness mobilities to decrease. If VGS and VSB

are both increased such that Qinv is held constant (i.e. screening strength is not changed),

then although phonon and surface roughness mobilities would decrease, we would expect

Coulombic mobility to remain unchanged based on the model derived in Section 3.2.2.

To test our hypothesis, we experimentally investigated the effect of substrate bias on

screened Coulombic mobility. Results shown in Fig. 3.4 indicate that Coulombic mobility

is a very weak function of substrate bias, thus confirming our hypothesis as well as the

validity of the new model.
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3.5 Systematic Extraction Technique

The technique used by Takagi et. al. [9] and other researchers [91] for extracting

Coulombic mobility in the inversion-layer is based on the split C-V method [75]. For a

MOSFET biased in the linear region, the expression for drain current IDS is given by (see

Ref. [93]) :

(3.39)
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Figure 3.4 Coulombic mobility is shown to be a weak function of
substrate bias, demonstrating that electron density and channel charge are
the dominant parameters affecting Coulombic scattering.
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where ϕ is the quasi-fermi potential, Qinv is the inversion charge per unit of channel area,

W and L are the channel width and length respectively, and VDS is the drain voltage. In the

limit of , Qinv can be considered as a constant, and equation (3.39) reduces to:

(3.40)

Thus, if measurements are performed at a vanishingly small VDS (around 10 to 30

mV in practice), effective mobility can be computed from equation (3.40) as

(3.41)

Inversion charge per unit area can be mapped as a function of gate voltage by noting

that

(3.42)

where dQinv /dVGS is simply the gate-to-channel capacitance which can be measured using

the “split” C-V technique [94] performed at intermediate frequencies to suppress the

response of interface states and the effect of channel resistance [95]. Resolution of the

split C-V technique is severely degraded if the carrier concentration in the inversion layer

is small [96] (i.e. in weak inversion which corresponds to the subthreshold region of

operation). Since equation (3.42) gives accurate results in strong inversion, the C-V

technique can be successfully applied to extract screened Coulombic mobility from

equation (3.41). However, the split C-V technique can not be extended to extract

unscreened Coulombic mobility from equation (3.41) since that requires measurement of

Qinv in subthreshold which can not be accurately performed by the split C-V technique.

Since Qinv can not be accurately measured in subthreshold, we instead work with IDS

which can be accurately measured in subthreshold. A new and systematic technique is

proposed that involves classical and quantum simulations, and requires I-V and C-V data

from measurements. We see from equation (3.40), which is applicable in subthreshold,
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that an accurate simulation of IDS would require correctly calculating Qinv and µeff . The

simulations are performed using PISCES [54], a two-dimensional device simulator that

solves the drift-diffusion equation. The following pieces of information must be supplied

to PISCES in order for it to accurately calculate Qinv :

(1) Doping profile:

The devices that are being simulated have a uniform doping profile [9]. A high

degree of uniformity was achieved by annealing the samples at 1190°C for 60

minutes. Background doping was determined from the C-V capacitance

measurements in the high-frequency1 (100 kHz) [10] regime using the

maximum-minimum capacitance method [109]. Based on comparison with

process simulation results, the accuracy of this extraction was found to be

limited to 10% [96].

(2) Oxide thickness:

The oxide thickness was determined from high frequency C-V measurements

in the accumulation region. The accuracy of this measurement is typically

within 2% [109].

(3) Interfacial and fixed oxide charge:

Interfacial and fixed oxide charges were determined by comparing theoretical

and measured high-frequency C-V curves. Accuracy of the theoretical curves

is limited to the accuracy with which oxide thickness and substrate doping is

known. Since, shifts are measured between flatband and threshold voltage,

based on the expression for capacitance near flatband [93], the accuracy of this

calculation is around 12%.

(4) Quantum corrections:

Since PISCES does not solve the Schrodinger’s equation for electrons in the

inversion layer, we need to consider two corrections that arise from the

quantization of the electron gas. The first effect of quantization is the creation

of energy sub-bands in the inversion layer [8]. Classically, electrons would

start occupying the conduction band at ε = 0. However, quantum mechanically,

the lowest energy level in the conduction band that they can occupy

corresponds to the first sub-band at ε = εo . This energy separation εo appears as

1. High frequency suppresses the response of interface states [109].
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an effective increase in band-gap which tends to reduce Qinv . The other effect

of quantization is the emergence of wavefunctions. Classically, electrons

would distribute themselves according to Maxwell-Boltzmann statistics, in

which case the electron concentration would be maximum at the interface and

decrease monotonically away from the interface. Quantum mechanically,

electron concentration peaks where the wavefunction is a maximum which

occurs at a certain distance zm below the interface. The effective oxide

thickness (tox + zm) is larger than the physical oxide thickness tox , which also

tends to reduce Qinv . The net effect of both the quantum corrections can be

determined by comparing the Qinv-Vgs curves of a self-consistent

Schrodinger-Poisson solution with a classical solution from PISCES. The shift

due to the quantum mechanical correction approximately follows

[110]. Hence, the accuracy of this calculation is limited to about 5%.

Calculation of drain current by PISCES, using the four pieces of information mentioned

above, would be limited to an accuracy of about 30%.

To correctly calculate mobility in subthreshold, the model in PISCES should

incorporate the following terms:

(1) Phonon scattering:

Mobility due to phonon scattering is extracted using the same methodology

[43] as for screened Coulombic scattering. When plotted as effective mobility

versus effective field Eeff , phonon scattering yields what is known as the

universal mobility curve. The concept of the universal mobility curve (UMC)

was first proposed by Sabnis and Clemens [43], and since then other

researchers [9], [33], [77], have successfully reproduced the UMC. While

phonon mobility is extracted in strong inversion, its model can be extended to

the subthreshold region by virtue of the UMC, and is explained as follows.

From equation (3.38), for the same VGS - VTO (which determines the degree to

which the channel is inverted), a lightly doped substrate results in a smaller

value of Eeff compared to a heavily doped substrate. It is an experimentally

observed property of the UMC that both the doping levels would overlap on

the UMC [43], with the curve generated by the lightly doped substrate starting

at a smaller value of Eeff compared to the heavily doped substrate. The UMC is

Tox NA
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applicable to phonon mobility regardless of substrate doping [43], since an Eeff

value corresponding to subthreshold for a certain doping would correspond to

strong inversion for a lighter doping. Hence, the UMC can be used to

determine phonon mobility in subthreshold. Implicit in this argument is that

the screening of the phonon deformation potential by the electron gas is

considered to be negligible [106].

(2) Surface roughness scattering:

Mobility due to surface roughness scattering is extracted using the same

methodology as for screened Coulombic scattering [10]. Surface roughness

scattering will follow the UMC provided the interfacial properties of the

Si-SiO2 system remain invariant. This for instance would be true for

MOSFETs whose gate oxide is grown under similar conditions. Based on the

same reasoning as for phonon scattering, surface roughness scattering can also

be determined from the UMC in subthreshold.

(3) Coulombic scattering

Unscreened mobility is the last piece of information that would be needed to

accurately simulate IDS in subthreshold. Unlike phonon and surface roughness

scattering, Coulombic mobility in strong inversion is very different from that

in weak inversion; hence Coulombic scattering does not follow the UMC [9].

The new extraction technique for unscreened Coulombic mobility is based on the

following observation: for the simulated IDS to exactly match the measured IDS in

subthreshold, the device simulator would have to correctly calculate Qinv and µeff in this

region. Assume that the four pieces of information required to accurately calculate Qinv

are available. On the other hand, the only available mobility model is the one that is based

on the UMC (see Section 4.6), which incorporates phonon and surface roughness

scattering. Due to the lack of a term for unscreened Coulombic scattering, calculation of

µeff in subthreshold is inaccurate. Any discrepancy between simulated and measured IDS

in subthreshold is now attributed to unscreened Coulombic scattering. The extraction of

unscreened Coulombic scattering from this discrepancy is described below.

The MOSFET devices used in this study are 200µm long and 100µm wide, each

with a gate oxide thickness of 250Å, and a uniform substrate doping that lies between

1x1016 and 1x1018 cm-3. For each substrate doping level, the following five steps are
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performed to arrive at a value for unscreened mobility and its corresponding effective

doping level:

(1) For the device under test, the interfacial and fixed oxide charges are

determined from high-frequency C-V measurements, and the values supplied to

PISCES. Since interfacial and oxide charge is typically positive, its

electrostatic effect on Qinv is to increase it. This results in a rigid left shift of

the IDS-VGS curve in subthreshold. The accuracy of this correction is limited to

12%. It should be mentioned that the value extracted for interfacial and oxide

charges also includes the difference in workfunctions.

(2) For that particular substrate doping level, self-consistent 1-D

Schrodinger-Poisson simulations are performed to generate an Qinv-VGS curve

which is then compared with a corresponding classical curve generated by

PISCES. The shift between the two curves is taken to be the quantum

correction, which is supplied to PISCES in the form of a rigid VT shift. The

shift in the IDS-VGS curve is to the right since quantum corrections appear as

an effective increase in bandgap. The accuracy of this calculation is limited to

around 5%.

After steps 1 and 2 have been performed, the simulated IDS curve, accurate to within 30%,

is compared with the corresponding experimental IDS curve, an illustration of which is

shown in Fig. 3.5. We note from Fig. 3.5 that the simulation results predict IDS that is

higher than the measured values. Since we have accounted for all the factors affecting the

calculation of Qinv , this discrepancy is attributed to an incorrect calculation of mobility by

PISCES. The mobility model used in PISCES simulations has terms for phonon and

surface roughness scattering. Thus, it is the lack of a term for unscreened Coulombic

scattering that is the cause of this discrepancy. Since QSIM =QEXP , from equation (3.40),

the ratio of drain currents is simply the ratio of mobilities:

(3.43)

where ISIM and IEXP are simulated and experimental IDS  respectively, µUMC is the

mobility model based on the universal mobility curve, µEXP is the actual value for

ISIM

IEXP
-----------

µUMCQSIMVDS L⁄
µEXPQEXPVDS L⁄
--------------------------------------------

µUMC

µEXP
--------------= =



Chapter 3      Coulombic Scattering in MOS Inversion Layers 53

mobility in subthreshold, and QSIM and QEXP are simulated and experimental Qinv

respectively. For the three doping cases considered in this work, the ratio ISIM / IEXP took

on values between 10 and 20. The 30% error in ISIM is clearly much less than the

discrepancy due to unscreened Coulombic scattering, thus establishing the accuracy of the

proposed extraction technique.

In the third step, µEXP is obtained from equation (3.43) as:

(3) Calculation of µEXP :

(3.44)
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If we assume that the various scattering mechanisms can be summed up using

Matthiessen’s rule [14], then the unscreened Coulombic mobility µUN is calculated as:

(4) Calculation of µUN :

(3.45)

Thus, for each channel doping level, we are able to extract a value for unscreened

Coulombic mobility by performing steps 1 through 4. In the final step, we need to

calculate the effective substrate doping level associated with this mobility value.

It is important to note that besides affecting the calculation of Qinv , interfacial and

oxide charges also affect the calculation of Coulombic mobility. The total charge in

two-dimensions that would scatter inversion layer electrons is:

(3.46)

where Nif is the interfacial charge, Nf is the oxide charge, NA is the acceptor charge in the

channel and <Zinv> is the average thickness of the inversion layer in subthreshold. This

thickness is calculated from a self-consistent 1-D solution of the Schrodinger-Poisson’s

equation. Thus, the equivalent charge in the substrate <NA>eff that would scatter the

electrons is calculated as:

(5) Calculation of effective charge in substrate:

(3.47)

As can be seen from equation (3.47), the effect of interfacial and oxide charges is to

increase the “effective” channel doping density seen by the inversion layer electrons.

The result of applying steps 1 through 5 is shown in Fig. 3.6 which also presents the

comparison between extracted data, the new 2D model for unscreened Coulombic

scattering, and the 3D model of Conwell and Weisskopf [12]. As can be seen from Fig.

3.6, the new 2D model exhibits much better agreement than the 3D model, suggesting that

even in subthreshold, the electron gas behaves as a two-dimensional gas. This has to do

µUN

µUMC µEXP–

µUMCµEXP
--------------------------------=

N2D Nif Nf NA Zinv〈 〉⋅+ +=

NA〈 〉
eff

N2D

Zinv〈 〉
---------------≡

Nif Nf+

Zinv〈 〉
------------------ NA+=
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with the fact that at high doping levels, such as those shown in Fig. 3.6, the potential wells

are still quite steep in subthreshold, leading to significant quantization of the electron gas.

3.6 Impact of Coulombic scattering on VT

Threshold voltage, VT , is a very important design parameter for digital MOS

applications since it represents the trade-off between Ioff , the off-state leakage, and Ion ,

the current drive of the MOSFET. Aggressive design and optimization of submicron

MOSFETs would require an accurate prediction of VT .

Consider the design of MOSFETs for low-power applications. One method for

Figure 3.6 Comparison between extracted experimental data, new 2D
model for unscreened Coulombic scattering, and 3D model due to Conwell
and Weisskopf.
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reducing power dissipation, which is proportional to , is to scale Vdd. However,

reduction of Vdd causes Ion to decrease, which negatively impacts the performance of the

system. In an effort to improve the performance, the design of low-threshold devices has

been suggested [84], [4]. While the Ion of such devices would increase, so would Ioff

which would result in increased standby power dissipation. Thus, for devices that are to

operate at low Vdd , optimization of VT is required to maximize performance and minimize

standby power dissipation. If deep submicron MOSFETs are to be designed for low-power

applications using 2D device simulation tools, it is essential that the simulator be able to

accurately calculate the VT of such devices which are doped heavily to suppress

punchthrough and DIBL effects.

Figure 3.7 presents the VT comparison between experimental data and simulation

results obtained without a model for unscreened Coulombic scattering. The devices used

in this study have the same oxide thickness (250Å) but different channel doping levels.

Thus, as the channel doping is increased, the absolute value of threshold voltage also

increases. In practice, MOSFETs with heavily doped channels will have thinner oxides

(less than 250Å), as mandated by the scaling rules to keep the VT at a reasonable value.

What is important to note, however, is that the discrepancy between predicted and

measured VT values increases as the channel doping goes up. This is because there is

increased Coulombic scattering at higher channel doping levels, and hence the error is

expected to be larger. Therefore, it becomes even more important to include a model for

Coulombic scattering when designing MOSFETs with heavily doped channels. For

instance, 0.1µm MOSFETs are expected to have channel doping levels around 1x1018

cm-3 and would be designed to operate at a Vdd of 1.0 to 1.5V [6]. Thus, a mobility model

containing Coulombic scattering would be an important aid in technology scaling and

optimization.

3.7 Conclusion

In this chapter, a first-principles analysis of two dimensional Coulombic scattering

was presented. Unscreened Coulombic scattering was treated first, which is the scattering

of electrons by a bare Coulombic potential. This type of scattering dominates in weak

Vdd
2
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inversion where there are too few carriers to screen the Coulomb potential. To keep the

analysis tractable, the following assumptions were made: (a) the electron gas was treated

as being strictly two dimensional (i.e. the envelope wavefunction was taken to be a delta

function), and (b) the impurity atoms were assumed to be distributed as a sheet of charge

near the interface. The first assumption holds if there is strong quantization (i.e. the

deBroglie wavelength of electrons is larger than the confining potential). The second

assumption holds in deep submicron MOSFETs that tend to have a large amount of charge

implanted near the interface to suppress DIBL and punchthrough effects.

Screened Coulombic scattering was treated next. The longitudinal dielectric function

for the electron gas was calculated in the random phase approximation, which led to an

expression for the screened Coulomb potential. In addition to the assumptions made for

Figure 3.7 Comparison between experimental data and simulation results
obtained without a model for unscreened Coulombic scattering.

1e+16 2e+17 4e+17 6e+17 8e+17 1e+18
Channel Doping (cm-3 )

0.0

1.0

2.0

3.0

4.0

5.0
T

h
re

sh
o

ld
 V

o
lt

ag
e 

(V
)

Experimental Data

Simulation results without
Coulombic Mobility

TOX=250A



Chapter 3      Coulombic Scattering in MOS Inversion Layers 58

unscreened scattering, it was further assumed that for strongly screened scattering, the

single-particle relaxation time is approximately equal to the momentum relaxation time.

This assumption permitted a closed-form solution to be calculated for screened

Coulombic mobility. On comparison with experimental data, it was demonstrated that the

new 2D model for screened Coulombic scattering accurately captures the screening

dependence whereas the 3D model due to Brooks-Herring fails to do so. It was also

established that screened Coulombic mobility is a strong function of channel charge and

not of the effective electric field. This behavior is in sharp contrast with phonon and

surface roughness scattering.

Since no known technique exists for extracting unscreened Coulombic scattering, a

new and systematic technique was presented that involves quantum and classical

simulations and requires the use of C-V and I-V data. Comparison of the extracted data

with models showed that the new 2D model for unscreened Coulombic scattering gives

better agreement with experimental data than the 3D model based on the formulation of

Conwell and Weisskopf.

Finally, the importance of modeling Coulombic scattering in MOS inversion layers

was established by demonstrating its impact on critical design parameters such as

threshold voltage and off-state leakage current. It was noted that a mobility model

containing Coulombic scattering would be an important aid in technology scaling and

optimization.
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Chapter 4

Numerical Modeling of the
Generalized Mobility curve

4.1 Introduction

To be able to better predict the I-V characteristics of modern scaled MOSFETs,

accurate mobility models are required which incorporate all of the basic scattering

mechanisms operating in the inversion layer. At least three different scattering

mechanisms have been identified that affect carrier mobility in the inversion layer. These

include phonon scattering, Coulomb scattering, and surface roughness scattering [72]. At

room temperature, Coulomb scattering is only important if there are a large number of

charge centers present which can arise from either interfacial charge or channel dopants.

Both phonon scattering and surface roughness scattering are important at room

temperature, with surface roughness being especially important at high transverse electric

fields. Therefore, in long channel MOSFETs with moderate to low channel doping levels,

inversion-layer mobility is primarily limited by phonon scattering and surface roughness

scattering.

There are two kinds of interactions possible between electrons and phonons: elastic

and inelastic scattering. In elastic scattering, the energy of the electron after collision with

the phonon is relatively unchanged, and this type of interaction dominates when the

electrons are not very energetic. In contrast, inelastic scattering involves energy exchange

between the electron and phonon systems, and the probability of this interaction increases

as the energy of the carriers increase.
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In the ohmic regime, the relationship between carrier velocity v and longitudinal

electric field E is linear. In this regime, the applied fields are sufficiently low such that the

electron gas is always in thermodynamic equilibrium with the lattice, i.e. the temperature

of the electron gas is approximately equal to the lattice temperature. Thus, in the ohmic

regime, phonon scattering is predominantly elastic. However, as the magnitude of the

applied field increases, the electron gas is able to gain more energy from the field and

“heat” itself. The resulting hot carriers have a much higher probability of engaging in

inelastic collisions. In this regime, the relationship between velocity and applied field is no

longer linear. In the discussion that follows, we shall be concerned exclusively with

aspects of low-field transport in which . The constant of proportionality is termed as

mobility µ, and it is a measure of how well the carriers respond to a driving field E.

It is well known that low field mobility in a long channel MOSFET follows the

universal mobility curve [9], [33], [43], a concept that was first introduced by Sabnis and

Clemens [43]. The principal features of the universal mobility curve (UMC) are that it is

invariant to changes in (i) oxide thickness, (ii) channel doping, and (iii) substrate bias. The

universality of mobility indicates that it is a property associated with the Si/SiO2 system

and not a parameter sensitive to nominal process variations [43]. It was shown by Lee et.

al. [53] that the universal mobility curve can be explained on the basis of phonon

scattering and surface roughness scattering in the inversion layer.

In short channel MOSFETs, which tend to have high channel doping levels to

suppress punchthrough and drain-induced-barrier-lowering effects, another scattering

mechanism has become important, namely Coulombic scattering due to ionized channel

dopants. While phonon scattering and surface roughness scattering lead to the universal

mobility curve, it was experimentally observed by Takagi et. al. [9] that in the presence of

strong Coulombic scattering, marked deviations from the universal mobility curve are

obtained. The resulting curve is termed as the generalized mobility curve or the GMC.

In the previous chapter, we presented a theoretical analysis for two dimensional

Coulombic scattering in the inversion layer. The model presented there (see equations

(3.11), (3.35), and (3.36) ) was cast in terms of non-local variables such as Ninv  and N2D ,

the electron and impurity charge density per unit of channel area respectively. While

physically based models may originally appear in non-local form, for implementation in

device simulators based on the finite-volume method [55] such as PISCES [54], it is

highly desirable to reformulate the model in terms of local variables such as n and N , the

v E∝
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electron and impurity charge density per unit volume respectively.

Moment-based device simulators [55] solve a set of coupled non-linear partial

differential equations by discretizing them in space and time domain1. These discretized

equations are then solved by either linearizing or decoupling them [55], [56]. In the

discretization process, the continuum of space and time is broken into a set of discrete

points, which are typically called nodes. The goal then is to calculate the variables of

interest at these nodes at a given time. Thus, within a device simulator, a local

computation is one which involves information from the nearest neighboring nodes only.

The implication is that during the linearization step, the less the coupling among the

various nodes, the easier it is to solve the discretized set of algebraic equations. On the

other hand, a non local computation involves information from nodes that can be far apart.

This tends to increase the degree of coupling among the nodes in the device, whose

primary effect is to increase the computation time.

There are other attributes to implementing models in a local form. Parallel device

simulators that are based on the domain decomposition scheme [57] see a significant

decrease in computation speedup if non-local models are used. Moreover, local models

allow for the simulation of complex, non-planar 2-D and 3-D structures which is not

possible if a non-local formulation is used since a non-local model assumes a planar

structure [30].

In this chapter we present a local model for low-field mobility that includes phonon,

surface-roughness, and Coulombic scattering. A local model should satisfy the properties

attributed to the non-local generalized mobility curve (GMC), since the general form of

the GMC lends itself to physical interpretation [53]. We define the GMC as the sum of a

universal part (the Universal Mobility Curve (UMC) [43]) and a non-universal part [9].

The new model has been implemented in PISCES [54], a 2-D device simulator, and it

indeed reproduces the GMC over a wide range of parameters. Good agreement of the new

model with several sets of experimental data is shown.

The organization of this chapter is as follows. First, in Section 4.2, a physically

correct scheme is presented for combining the various scattering mechanisms. In Section

4.3, phonon scattering in MOSFETs is discussed: Section 4.3.2 presents the theoretical

1. The differential equations are converted into algebraic equations through the discretization
procedure.
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basis for 2D phonon scattering; Section 4.3.3 outlines the extraction of a 2D

semi-empirical model from the first-principles model; and Section 4.3.4 presents an

empirical model for 3D phonon scattering.

Surface roughness scattering is discussed next in Section 4.4: theoretical treatment is

considered in Section 4.4.1, and its semi-empirical formulation presented in Section 4.4.2.

Section 4.5 is concerned with Coulombic scattering. Since, a first-principles model

for 2D Coulombic scattering was presented in Chapter 3, Section 4.5.1 discusses the

extraction of the semi-empirical model. Section 4.5.2 presents an empirical model for 3D

Coulombic scattering.

The universal mobility curve is modeled in Section 4.6 by combining the

semi-empirical models for phonon and surface-roughness scattering. The parameters

appearing in phonon and surface-roughness terms are calibrated to reproduce all the

properties of the UMC.

Finally, in Section 4.7, the generalized mobility curve is modeled by including the

term for Coulombic scattering in the model for the UMC. The resulting semi-empirical

model is shown to accurately reproduce the GMC over a wide range of biases and channel

doping levels.

4.2 Formulation of the Model

Most formulations of inversion-layer mobility start with the following functional

form [29], [30], [31], [32]:

(4.1)

The surface term models the 2D scattering mechanisms, whereas the bulk term

models the 3D effects. Matthiessen’s rule summation is strictly correct when the scattering

mechanisms that are being added are independent [15], but not mutually exclusive.

Independence here means that the probability of scattering due to a particular mechanism

does not depend on the previous scattering events of a particle. Assumption of

independence allows us to simply add the momentum relaxation times to arrive at the total

relaxation time [15]. Moreover, if the energy-dependence of the scattering mechanisms

1
µtotal
------------- 1

µsurface
------------------ 1

µbulk
------------+=
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are identical, then we can add the mobilities instead of relaxation times to arrive at the net

mobility [15]. This in essence is the Matthiessen’s summation rule.

The property of mutual-exclusiveness means that if a certain scattering event occurs,

then it precludes some other scattering event from happening. For example, in equation

(4.1), the phonon scattering term is added twice: first as a 2D term, and then as a 3D term.

However, calculation of mobility near the surface must only consider the interaction of a

quantized electron with a 3D phonon, and not the interaction of 3D electrons with 3D

phonons. Nevertheless, equation (4.1) includes both interactions, and thus is a limitation

of that formulation. We present a more physically-based formulation which is consistent

with the nature of the various scattering mechanisms involved. Instead of partitioning

events as either surface or bulk, we split them according to the nature of the perturbing

potential. Thus, the proposed formulation takes on the following form:

(4.2)

The hierarchical taxonomy of the new model in equation (4.2) is shown in Figure 4.1. A

detailed discussion on the modeling of each term in the hierarchy is covered in the

following sections.

4.3 Phonon Scattering

4.3.1 General Considerations

To ensure the mutual-exclusivity of phonon scattering, it is expressed as the infinity

norm1 of 2D phonon and 3D phonon scattering:

(4.3)

In this formulation, , the phonon-limited mobility near the surface, represents the

1. Lp norm of vector x is . Euclidean norm is p=2, whereas  yields .

1
µtotal
------------- 1

µphonon
------------------ 1

µsurface roughness
---------------------------------------- 1

µCoulomb
---------------------+ +=

xi
p

i
∑p p ∞→ min xi: i=1,....,N{ }

µph min µ2D
ph µ3D

ph,=

µ2D
ph
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interaction between quantized electrons and bulk-mode (3D) phonons1, whereas , the

phonon-limited mobility in the bulk, represents the interaction between bulk electrons and

bulk-mode phonons. On the other hand, the physical interpretation of the commonly used

formulation — the one given in equation (4.1) — is that the calculation of phonon-limited

mobility near the surface considers the interaction of 2D electrons with 3D phonons (the

surface term) as well as the interaction of 3D electrons with 3D phonons (the bulk term).

Clearly, calculation of mobility near the surface in the presence of a strong transverse field

need not include the interaction of 3D electrons with phonons since electrons near the

surface are quantized! This distinction is elegantly handled by equations (4.2) and (4.3).

1. 3D phonons are generated by atomic vibrations in which the elastic constant of the lattice is close
to identical in all three directions, thus allowing bulk modes to exist. 2D phonons, also known as
surfons, are generated if the elastic constant is sufficiently different in one direction, thus allowing
interface modes to exist. In the Si/SiO2 system, velocity of sound is not very different between the
two media; hence, interface modes do not play a significant role in electron-phonon scattering.
Thus, electron-phonon scattering in the inversion layer is treated entirely as the interaction
between bulk-mode phonons and the two dimensional electron gas [8], [46].

Mobility

Surface
Roughness CoulombPhonon

2D 3D 3D 2D2D

INV INV

Summation via Matthiessen’s Rule

Minimum Function 2D/3D Transition Function

Figure 4.1 Hierarchical taxonomy of the new semi-empirical local model.
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Besides the fact that equation (4.1) inherently presents a non-physical picture, we shall see

later that such a formulation does not allow us to extend the model to accumulation layers.

Moreover, it was found that with the improved formulation given in equation (4.2),

calibrating parameters assumed values that were in closer agreement with first-principle

calculations.

4.3.2 Theoretical basis for 2D Phonon scattering

At room temperature, mobility in semiconductors is often dominated by phonon

scattering, and hence its study occupies a central place in the theory of electrical transport

in semiconductors. More importantly, phonon scattering unlike impurity scattering

provides a mechanism for energy loss, i.e. interaction of electrons with certain kinds of

phonons are inelastic in nature. In contrast, impurity scattering is purely elastic, and other

than contributing to momentum randomization, it plays no role in energy relaxation. For

instance, velocity saturation in semiconductors occurs entirely due to inelastic phonon

scattering.

In developing the theory of energy band structure, it is assumed that the lattice atoms

are frozen in space. However, in reality, the atoms vibrate about their equilibrium position,

and it is this vibration that accounts for the thermal energy of the lattice. As a result of

these vibrations, the periodic potential in the crystal varies with time and causes

alterations in the electronic states with time. The scattering of electrons due to alterations

in the periodic potential arising from atomic vibrations depends on the nature of these

vibrations and the nature of the atoms making up the crystal.

Atomic vibrations in the crystal generate elastic waves which can vibrate in one of

two modes. In the acoustic mode, neighboring atoms vibrate in phase, whereas in the

optical mode, they vibrate out of phase. The frequency of vibration, and hence the energy,

associated with the optical mode is higher than that of the acoustic mode. Optical mode

gets it name because electromagnetic radiation in the optical region of the spectrum

interacts with the optical mode, whereas acoustic mode gets it name because sound waves

in a solid propagate via the longitudinal1 acoustic mode. Phonons represent the

quasi-particles associated with vibratory motion in the crystal, and depending on the

1. It should be pointed out that both acoustic and optical modes can vibrate either transversely or
longitudinally.
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mode, they are also termed as either acoustic or optical phonons.

Acoustic phonons in a crystal cause perturbations in potential in one of two ways.

First, due to changes in the spacing of the lattice atoms, the energy band gap and the

position of conduction and valence band edges vary from point to point. Potential

discontinuites are thus produced in the conduction and valence bands. The potential so

produced due to the deformation of the crystal is called the deformation potential, the

magnitude of which is evidently proportional to the strain produced by the vibrations. The

scattering of carriers by the deformation potential is called deformation potential

scattering. The second kind of perturbation is produced by acoustic vibrations through the

piezoelectric effect. If the atoms constituting the crystal are partially ionized, the

displacement of atoms due to the acoustic vibrations would produce potentials, the

magnitude of which would depend on the arrangement of the ionized atoms in the crystal.

The scattering of electrons by a piezoelectric potential is referred to as piezoelectric

scattering. This kind of scattering is important in compound semiconductors, particularly

at low temperatures.

Optical phonons also scatter electrons in one of two ways. The deformation of the

crystal due to optical vibrations produces a perturbing potential that is proportional to the

optical strain. This type of scattering is termed as deformation potential scattering via the

optical phonons, and in order to differentiate it from acoustic phonon deformation

potential scattering, it is typically termed as non-polar optical phonon scattering. The

second type of optical phonon scattering occurs by the creation of dipole moments due to

oppositely charged neighboring atoms. These dipole moments result in a perturbing

potential, and this type of scattering is known as polar optical phonon scattering.

Lastly, phonon scattering can either be intravalley or intervalley. The hierarchy of

lattice scattering is shown in Figure 4.2. In silicon with six equivalent X-valleys,

intervalley phonon scattering is an extremely important process, especially at high fields.

It should also be pointed out that acoustic phonon scattering is quasi-elastic since it

involves little exchange of energy with the electron. On the other hand, optical phonon

scattering is highly inelastic, and hence plays an important role in high-field transport.

In low field transport, acoustic phonon scattering plays an important role. In pure

silicon at low temperatures, intravalley acoustic phonon scattering dominates. As

temperature rises, intervalley scattering becomes important, while at room temperature

intravalley acoustic phonon scattering via the deformation potential and intervalley
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scattering are equally frequent. While intravalley scattering is predominantly due to

acoustic phonon scattering, intervalley scattering is primarily due to optical phonon

scattering. Since, we are interested in deriving an expression for low field mobility, we

present a theoretical treatment of acoustic phonon scattering via the deformation potential

(ADP).

In the deformation potential interaction, the scattering between electrons and

phonons occurs when the electron waves scatter off phonon waves which are represented

by elastic waves in a solid [15]:

(4.4)

where u(x,t) is the atomic displacement from the equilibrium position, Aβ is the amplitude

of the wave, β is the wavevector, and ω is the frequency. Since atoms vibrate in phase in

acoustic phonon scattering, the interaction potential is given by [15]:

Lattice

Intervalley

Intravalley

Acoustic

Optical

Deformation
Potential

Piezoelectric

Deformation
Potential (non-polar)

Polar

Scattering

Acoustic
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Figure 4.2 Hierarchical taxonomy of lattice scattering.
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(4.5)

where Hac is the interaction potential, and Dac is known the deformation potential. The

matrix element can hence be written as:

(4.6)

By equating classical and quantum energy terms, the following expression for Aβ is

obtained [15]:

(4.7)

Nω is the occupation number of phonons (i.e. the number of phonons with frequency ω

and hence with energy ), M is the total mass of atoms that interact with the electrons,

Nω is specified by Bose-Einstein statistics, and in the equipartition approximation,

. From the dispersion relationship for phonons, , where ul is the

velocity of sound in the crystal. Thus, the square of the matrix element becomes:

(4.8)

In 3D, , where ρbulk is the density of silicon atoms per unit volume and V is

the volume. In 2D, , where ρarea is the density of silicon atoms per unit area

and Ω is the area. Since phonon scattering is isotropic (i.e. velocity randomizing),

momentum relaxation time is the same as the inverse of the total scattering rate [15] (also

see equation (2.27) ). The expression for the total scattering rate in two dimensions is

given by:

(4.9)
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Substituting equation (4.8) in (4.9), the following expression for the momentum relaxation

time is obtained [58], [46], [63]:

(4.10)

Low-field mobility is obtained by averaging the momentum relaxation time weighted by

the energy over the distribution function [15], [59], [60]:

(4.11)

where fo(ε) is the Maxwell-Boltzmann distribution function, D(ε) is the density of states,

and ε is the energy. Substituting the momentum relaxation time given in equation (4.10)

into equation (4.11) yields the following expression for mobility [58], [47]:

(4.12)

Since ρarea is the areal mass density, it can be expressed as , where

Zinv is the thickness of the inversion layer. Hence, the expression for mobility takes on the

following form:

(4.13)

4.3.3 A Semi-Empirical Model for 2D Phonon scattering

Although the model appearing in equation (4.13) is calculated from first-principles,

it does not agree well with experimentally obtained results for phonon scattering in the

inversion layer. Due to the simplifying assumptions made in the derivation of the model in

equation (4.13), a good agreement is not expected in the first place. However, what

1
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equation (4.13) does provide is an insight into the trend of how acoustic phonon mobility

changes with respect to parameters such as temperature and inversion-layer thickness. In

formulating a model that must agree with experimental data, the functional dependences

from the first-principles model in equation (4.13) are retained but the proportionality

constant is allowed to vary to achieve good agreement with experimental data. Such an

approach is termed as semi-empirical modeling since we start with a physically-based

formulation, but vary prefactorial parameters until a good match with experimental data is

obtained. At the other extreme is empirical modeling in which all the parameters are

allowed to vary. Therefore, when equation (4.13) is cast in semi-empirical form, the

following expression is obtained [30]:

(4.14)

where Λ is a calibrating parameter to be determined by comparison with experimental

data, T is the lattice temperature, and Zinv is the thickness (or the width) of the quasi-two-

dimensional1 electron gas. The width of the inversion layer can be calculated either

classically or quantum mechanically.

A quantum mechanical analysis, in which the wave nature of electrons is

emphasized, is necessary if the dimension of the confining potential is comparable to the

deBroglie wavelength, , of electrons, which at room temperature is

approximately 150Å. In modern submicrometer MOSFETs, thinner gate oxides have

resulted in steeper potential wells near the interface, thus mandating a partial if not a

complete quantum mechanical treatment. If the electrons are indeed represented as

wavefunctions, then it has been found that the nature of the electron distribution in the

channel is significantly different from the case in which the electrons are treated as

classical particles [48], [49]. Figure 4.3 illustrates this difference. The potential at the Si/

SiO2 interface is assumed to be infinitely large. Hence the wavefunction vanishes at the

interface because of which the probability of finding an electron at the interface is zero.

Contrast this with the classical calculation in which the electron density is maximum at the

interface.

1. Quasi-2D instead of strictly 2D because of the finite spatial extent in the depth direction. It is this
spatial extent that we are defining as the width of the inversion layer.

µ2D
phonon Λ 1

T
--- Zinv⋅ ⋅=

λel h 3m∗ kBT⁄=
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In the quantum mechanical calculation, Poisson and Schrodinger equation is solved

self-consistently. For Poisson equation, the input is the charge density, and the output is

the potential profile which forms the input to Schrodinger equation whose output is the

wavefunction ψ(z) and the energy eigen-values εi . Thus, the coupling between the two

equations is via a constitutive equation relating the wavefunction to the electron density. If

the number of electrons in a particular subband is Ni , then the electron density at a point z

below the interface is:

(4.15)

where  is the wavefunction in the i-th subband. Ni can be simply calculated through

the 2D density of states and the Fermi-Dirac distribution function:

(4.16)
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Figure 4.3 Comparison between classical and quantum mechanical calculations of
electron density in the inversion layer of MOSFETs.
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where gv is the valley degeneracy, md is the density-of-states effective mass, εi is the

energy eigenvalue in the i-th band, and εF is the fermi level.

The primary difference between the quantum calculation and the classical

calculation is that in the classical calculation, Schrodinger equation is not solved for.

Instead the electron density is given by the usual 3D calculation:

(4.17)

To compute the quantum mechanical thickness of the electron gas, we start by

computing the average thickness of the electron gas in each subband [44]:

(4.18)

The average thickness for the quantized gas is then given by averaging over all the <zi>:

(4.19)

where ci is the fraction of the total number of electrons in the i-th subband:

(4.20)

Calculating ZQM via equations (4.18) and (4.19) requires knowing  first,

which can only be obtained by numerically solving Schrodinger’s equation and Poisson’s

equation in a self-consistent fashion. However, if we seek an analytical solution, the two

equations can be decoupled by assuming some reasonable form for the potential profile in

the inversion layer. The assumption typically made is that of a triangular well and the

resulting wavefunctions are given by Airy functions [49]. However, Stern [45] points out

that the triangular well approximation is a reasonable one if there is little or no charge in

the inversion layer, but it fails if the inversion-layer charge is comparable to or more than

the depletion layer charge. When only one subband is occupied (i.e. in the electric
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quantum limit), a variational approach [51] gives a good estimate for the energy

eigenvalue of the lowest subband. In this approach, instead of postulating a form for the

potential well, a trial eigenfunction is used with a single undetermined parameter, that is

calculated by minimizing the total energy of the system. When such an approach is used,

ZQM becomes <zo>, and is given by [45], [50]:

(4.21)

where  is the transverse effective field in the inversion

layer. In the presence of strong transverse fields, the width of the inversion layer closely

follows the quantum mechanical term due to strong quantization — most of the carriers do

occupy the lowest subband. However, in weak quantization, multiple subband occupation

takes place, and hence equation (4.21) breaks down. For this case, the width of the

inversion layer is well modeled in classical terms. If we imagine that the spread of the

electron gas in energy is of the order to the thermal energy kT, then force x distance gives

the energy of the gas which is . If we replace Esurface by the effective field

in the inversion layer Eeff , and equate  with the thermodynamic energy of

the gas which is (3/2)kT, we get the following expression for ZCL [29]:

(4.22)

To arrive at a formulation for Zinv that is applicable at all electric fields, one

possibility is to express Zinv as ZQM +ZCL , where the larger of the two numbers would set

the value for Zinv . If Eeff is small, ZCL > ZQM , and hence Zinv ≈ ZCL , which is what is

desired. Conversely, if Eeff is large, ZCL < ZQM , and hence Zinv ≈ ZQM . The transition

from classical to quantum regime is illustrated in Figure 4.4. Armed with this definition

for Zinv , phonon mobility in the inversion layer can be written as [30]:
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(4.23)

The effective field appearing in equation (4.23) is a non-local quantity, i.e. its calculation

requires summing information from various nodes. From a numerical simulation point of

view, non-local quantities are highly undesirable since they potentially slow down the

computation by increasing the bandwidth of the Jacobian matrix [55]. On the other hand,

if the Jacobian entries are altogether neglected, then it is not possible to perform an

accurate small signal analysis using the model [1]. Finally, it is implicit in the definition of

the non-local field that it assumes planarity of the Si/SiO2 interface which limits the

simulation to planar devices only [1].

On the other hand, the definition of the local electric field is based on local

information only. It allows the Jacobian to be set up symbolically for small signal analysis;

does not increase the bandwidth of the Jacobian matrix, and allows for the simulation of

non-planar devices. Thus, from a numerical implementation point of view, all models

should be strictly locally based [1]. By their very nature, macroscopic models derived

from basic physics would necessarily involve averaging over microscopic quantities. In

certain instances, such as for the two dimensional electron gas, averaging would be

Log(Eeff)

Zinversion

slope ~ 1/3

slope ~ 1

Figure 4.4 Thickness of the inversion layer as a function of transverse electric field.
At low fields, classical formulation is required, whereas at high fields, quantum
mechanical formulation is applicable.
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performed spatially as well, resulting in a reduced-dimensionality variable such as

integrated channel charge Ninv . For such cases, we need to make the transformation at the

numerical level from a 2D variable to a 3D variable.

In going from a 3D to a 2D variable, integration needs to be performed over one of

the space coordinates. For instance, in the case of the non-local effective field

(4.24)

where  is the local transverse electric field at coordinate z below the Si/SiO2

interface, and n(z) is the local electron concentration at z. While there is a unique

transformation from  to Eeff , the reverse transformation is clearly not unique. One

possibility is to simply set Eeff equal to  as proposed by Lombardi et. al. [30]. Although

this may appear to be an ad hoc approach, it should be noticed that the formulation in

equation (4.14) is a semi-empirical approach to begin with, and hence any further

deviation between theory and experiment due to such a transformation can be easily

accommodated by recalibrating the fitting parameter Λ. Thus, the resulting semi-empirical

model for phonon scattering in the inversion layer is given by:

(4.25)

Ideally, the fitting parameter γ appearing in equation (4.25) should be zero, since

electron-phonon interactions depend on the vibrational properties of the lattice and not

specifically the dopant concentration. The need for a non-zero γ can be postulated as

follows. Note that the model in equation (4.25) is formulated as a local model (i.e.  is a

local function of the space coordinates (x,y,z) ). On the other hand, the experimentally

observed universal mobility curve [43] is expressed as a function of the non-local

transverse electric field Eeff defined in equation (4.24). The calculation of a non-local

mobility from the local mobility involves integration in the depth direction (similar to the

case of the non-local electric field):
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(4.26)

The effective mobility obtained via equation (4.26) needs to reproduce the universal

mobility curve [43], and it was observed that a slight dependence of NA is required in

equation (4.25) in order to fit the local model with experimental data. This may have to do

with the fact that since there is no unique transformation from the non-local field to the

local electric field, making the arbitrary transformation of  in equation (4.25)

introduces a functional dependence on NA .

4.3.4 An Empirical Model for 3D Phonon Scattering

Scattering rate due to any perturbing potential is proportional to the density of states

available to the particles [64]. Confinement changes the energy dependence of the electron

density of states in a parabolic band structure from ε1/2 in the bulk to εo in 2D. Thus, for

three dimensional scattering, the momentum relaxation time obtained in equation (4.10)

for two dimensions changes to:

(4.27)

From equation (4.11), mobility for 3D phonons is thus calculated to be:

(4.28)

In comparing 3D mobility with 2D mobility (see equation (4.12)), we see that the

temperature dependence is much stronger in 3D compared to 2D. While equation (4.28)

provides a first-principles model, it is found experimentally that phonon mobility does not

quite follow the T -1.5 dependence as given in (4.28). Instead, the dependence is found to

be stronger, and hence the model for phonon scattering becomes purely empirical since we

calibrate both the proportionality constant as well as the exponent. Recall that in a
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semi-empirical model, the exponent is taken straight from first-principles analysis. Thus,

the model for three dimensional phonon scattering takes the form [61], [62]:

(4.29)

where θ = 2.285 and µmax = 1417 cm2/V-sec. Therefore, the expression for total phonon

mobility given by equation (4.3) becomes:

(4.30)

In equation (4.30), the parameter that determines whether phonon mobility is given

by the 2D term or by the 3D term is the transverse electric field . If gate bias is

sufficiently large to cause inversion and hence quantization of the electron gas, then

 is large near the interface. Thus, the calculation of , which is inversely related

to , would result in a small numerical value. If this value is less than the value for

, then  would be given by . In going from the surface into the bulk,

decreases in value, and hence  increases in value. If  exceeds , then at that

point,  is given by . The transition from 2D to 3D mobility is illustrated in Figure

4.5.

4.4 Surface Roughness Scattering

In deep submicron MOSFETs with scaled dielectrics, surface roughness scattering

has become a major limiting factor due to the presence of high transverse electric fields.

We first present a first principles approach to modeling surface roughness, and then

present a semi-empirical model that is calibrated against experimental data.
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4.4.1 Theoretical basis for Surface Roughness Scattering

Surface roughness occurs due to surface irregularities at the interface. Thus, it is

purely a two dimensional effect with no analog in the bulk. Surface roughness scattering

has been theoretically investigated using a simple model [65] which assumes that only the

lowest subbands are occupied, and deviations from perfect planarity ∆(x,y) are small in

magnitude and slowly varying in the x-y plane. Here we assume that the x-y plane is

parallel to the Si/SiO2 interface.

Due to variations in the z direction, i.e. the direction normal to the interface,

potential in the z direction is perturbed as well. Hence, the resulting Hamiltonian is given

by [66]:

Gate Oxide Silicon Substrate
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Ph
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2D term

3D term

Figure 4.5 Illustrating the transition from 2D mobility to 3D mobility as one moves
from the surface into the bulk. The assumption in this figure is that there is sufficient
gate bias to cause the 2D term at the interface to be less than the 3D term (which is
independent of the value of transverse electric field).
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(4.31)

Thus, the perturbing (interaction) potential, H-Ho, is given by:

(4.32)

Therefore, the matrix element for this perturbing potential is given by [67]:

(4.33)

To evaluate the first integral on the right hand side, the variational wavefunction ζ(z)

proposed by Stern and Howard [50] is used:

(4.34)

where

(4.35)

As shown by Matsumoto and Uemura [68], the integral is proportional to the effective

field in the inversion layer:

(4.36)

The second integral on the right hand side of equation (4.33) is simply the spatial Fourier

transform of ∆(x,y):
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(4.37)

where  . ∆(R) is assumed to have a Gaussian form of correlation between two

points [69] such that:

(4.38)

where <⋅ ⋅ ⋅> denotes the sample average, ∆ is the root mean square deviation of the

interface, and Λ is the correlation length. Defined this way,  is obtained as [67]:

(4.39)

If we neglect screening by the 2D electron gas, then the square of the matrix element is

given by:

(4.40)

and hence the scattering probability via the Fermi’s Golden Rule is obtained as:

(4.41)

The momentum relaxation time for an elastic scattering event such as Coulombic

scattering or surface roughness scattering is given by equation (2.35):

(4.42)

Therefore, the momentum relaxation time for surface roughness scattering is given by:

(4.43)
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As shown by Harstein et. al. [52], the correlation length Λ is about 6Å, and hence the

quantity kΛ is much less than unity. In this case, the relaxation time for surface roughness

is approximated by:

(4.44)

and the corresponding mobility calculated from equation (4.11) is obtained as:

(4.45)

Thus, we find that surface roughness mobility has a much stronger dependence on the

transverse effective field compared to phonon mobility. That is why at high electric fields,

mobility is limited more by surface roughness scattering than by phonon scattering.

4.4.2 A Semi-Empirical Model for Surface Roughness Scattering

The first principles model for surface roughness scattering is presented in equation

(4.45). In some sense, it is a semi-empirical model since the parameters ∆ and Λ that

characterize the Si/SiO2 interface cannot be obtained from a microscopic description of

the interface since such a calculation does not exist at present. Instead, ∆ and Λ are

typically determined by fitting experimental data with the model in equation (4.45). If we

lump all the parameters and constants into one fitting parameter, the resulting

semi-empirical model becomes [52]:

(4.46)

In transforming the model from a non-local formulation to a local formulation, we set Eeff

as  to obtain [1], [30]:

1
τsr
------

πm∗ ∆ΛqEeff( ) 2

h
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-----------------------------------------=
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q

----------------------------------------- 1

Eeff
2

--------⋅=
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δ

Eeff
2

--------=
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(4.47)

When the universal mobility curve was extracted using equations (4.24) and (4.26)

from the local model as defined later in equation (4.80), it was found that a constant δ
failed to reproduce the experimental UMC. As for the case of phonon scattering (see

equation (4.25)), incorporating a slight doping dependence in the δ term led to good

agreement between the local model and experimental results. Thus, the resulting model

for surface roughness scattering is postulated as:

(4.48)

Note that surface roughness scattering is really a 2D scattering mechanism with no

analog in 3D. Thus, as the distance from the surface increases, the magnitude of the

transverse electric field decreases, and surface roughness mobility increases. The

transverse electric field approaches zero in the bulk region; hence surface roughness

mobility tends to infinity. Thus, the surface roughness term drops out in the calculation of

total mobility as given by the Matthiessen’s summation in equation (4.2).

4.5 Coulombic Scattering

Having discussed the semi-empirical formulations for phonon and surface roughness

scattering, we now turn our attention to Coulombic scattering. In semiconductors,

Coulombic scattering is the interaction of carriers (electron or holes) with any form of

charge centers. These charge centers can be either stationary such as ionized impurity

atoms, interfacial charges at the Si-SiO2 interface, fixed charges in the oxide or they may

be mobile such as carriers themselves. Coulombic scattering between carriers and

stationary centers can be treated within the framework of one formulation, whereas

carrier-carrier scattering requires a separate formulation since now the scattering potential

is no longer constant as is the case for the scattering of carriers by stationary centers. In

what follows, we are primarily interested in Coulombic scattering due to ionized

impurities, which is also simply known as impurity scattering. Note that the terms

µsr
δ

E⊥
2

r( )
----------------=

µsr

C NA
γ⋅

E⊥
2

r( )
----------------=
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Coulombic scattering and impurity scattering would be used interchangeably since only

one mechanism in the hierarchy of Coulombic scattering is being considered.

Coulombic scattering requires a slightly different formulation from phonon

scattering since in the case of Coulombic scattering there is no natural variable that allows

a transition to be made from 2D to 3D mobility. In the case of phonon scattering (see

equation (4.30) ), the transverse electric field  serves the role of a transition variable,

and such a formulation works very well since 2D phonon mobility is a function of  (see

equation (4.25)) whereas 3D phonon mobility is independent of  (see equation (4.29)).

The problem arises because of the fact that inherently, Coulombic scattering in 2D is

a function of the electron density, and not of the electric field. In other words, changes in

Eeff do not necessarily cause changes in Coulombic mobility unless carrier density

changes as well. This is due to the fact that Eeff can change while Ninv is held constant.

This is seen most simply by examining the relationship between Eeff and Ninv:

(4.49)

While , it can be easily shown that .

Thus combinations of Vgs and Vsb that keep Ninv constant would not hold Eeff constant and

vice versa. The lack of a one-to-one correspondence between Eeff and Ninv is evident from

equation (4.49) where it can be seen that a monotonically changing Ninv does not

guarantee a monotonically changing Eeff . The lack of a unique relationship between Ninv

and Eeff is why the Ninv dependence in Coulombic scattering cannot be transformed to an

Eeff dependence.

For phonon scattering, the field term  serves as a useful transition variable

since 2D phonon mobility varies with  but 3D phonon mobility does not. However,

for Coulombic scattering, the electron density n(r) cannot be directly used as a transition

variable either since both 2D and 3D Coulombic mobilities are functions of n(r). Since

neither of the intrinsic variables n(r) or  can be used as transition variables,

transition functions are explicitly created that delineate the two and three dimensional

E⊥

E⊥

E⊥

Eeff
q
εsi
------ ηNinv Ndepl+[ ]=

Ninv Vgs VT Vsb( )–[ ]∝ Eeff Vgs VT Vsb( )+[ ]∝

E⊥ r( )

E⊥ r( )

E⊥ r( )
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regimes.

The most natural way to distinguish between 2D and 3D regimes is to consider the

nature of a quantum well (i.e. the degree of quantization). A steep potential well would

indicate strong quantization, and hence a two dimensional behavior, whereas a shallow

potential well would indicate weak quantization, and thus warrant a three dimensional

treatment.

To formulate the transition function for Coulombic scattering, it is postulated that in

a narrow quantum well the electron gas is quantized, and Coulombic mobility is given by

the 2D term. On the other hand, in a shallow quantum well the electron gas behaves like a

3D gas, and hence Coulombic mobility is given by the 3D term. In the triangular well

approximation [8], the energy eigenvalue of the i-th sub-band is given by:

(4.50)

Figure 4.6 illustrates the formation of subbands in the quasi-triangular potential well. Note

εi
3πh

2
---------- 

  2 3⁄
q

2 3⁄ 1
2mz
--------- 

  1 3⁄
i 0.75+( ) 2 3⁄

E⊥ eff,
2 3⁄⋅ ⋅ ⋅ ⋅=

Oxide Silicon Substrate

εo

ε1

ε2
conduction band

Bulk-like
2D-like

2D-like

Bulk-like

Figure 4.6 Illustrating the formation of energy subbands due to triangular well
confinement of the electron gas near the Si-SiO2 interface.
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that in going from the surface into the bulk, the confinement length between the

conduction band and the oxide barrier increases, thus reducing the degree of quantization.

Since quantization is strongest near the bottom of the conduction band, the separation of

sub-bands is largest near the bottom which decreases as one moves towards the bulk.

Therefore, the energy separation between the lower subbands can serve as a good

indicator for the degree of quantization. Considering just the energy separation between

the zeroth and the first energy level, one obtains from equation (4.50):

(4.51)

The transformation  is made in order to allow for a local calculation.

If the Si-SiO2 interface is along the (100) plane, two sets of energy sub-bands, also

known as ladders, are created in the quantum well due to differing effective masses. From

the six-fold degeneracy of the silicon band structure, two valleys are aligned with the

transverse field, whereas the other four valleys are perpendicular to the transverse field.

Electrons in the aligned valleys exhibit longitudinal mass, whereas those in the

perpendicular valleys exhibit transverse mass. In silicon, the transverse effective mass is

smaller, and from equation (4.51) this set of energy bands exhibits greater sub-band

separation. On the other hand, the two valleys with the longitudinal mass are less

separated in energy, and in absolute values also are lower in energy. For instance, energy

of the lowest sub-band in the longitudinal ladder set is lower than that of the transverse

set. Thus, the longitudinal ladder set is considered in our calculations since it is the first to

get occupied. For this ladder, meff = 0.92, and hence, equation (4.51) becomes:

(4.52)

where E⊥  is expressed in V/m and ∆ε in Joules.

If the energy separation, , is larger than kT, the thermal spreading energy, then

most of the carriers would occupy the ground state, and the electron gas can be treated as

being quantized or two-dimensional. Conversely, if the energy separation is smaller than

kT, then both the sub-bands would be occupied, and we can treat the electron gas as being

ε1 ε0– ∆ε 9.49
26–×10

E⊥ eff,
2
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--------------

 
 
  1 3⁄

⋅= =

E⊥ eff, E⊥ r( )→
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bulk-like. Thus, the parameter of interest, α, is defined as :

(4.53)

where E⊥  is expressed in V/cm, k is the Boltzmann’s constant, and T is the temperature in

Kelvins.

If α is large, the quantization is strong, and conversely, for small α electrons behave

like a 3D gas. A transformation is required from α to a number which is bounded between

zero and one. For instance, when α is large, this function of α should map to zero, and if α
is small, it should map to one. Clearly a threshold point is needed and also a specification

of the degree of abruptness of the transition from zero to one. One possible transform

function, closely resembling the Fermi-Dirac distribution function, is proposed below:

(4.54)

The transition point is defined by λ (akin to the fermi level), and the abruptness of the

transition is defined by η (akin to kT). Postulating that if ∆ε > 2kT, the electron gas near

the surface is quantized, and conversely if ∆ε < 2kT, it is bulk-like, λ is set equal to 2. In

order to make the transition from 2D to 3D sharp, η is chosen to be 0.5. The function f (α)

is schematically shown in Figure 4.7. Thus, Coulombic mobility can now be expressed as:

(4.55)

Near the interface if  is large,  would be large, and consequently α would be large.

Hence, f(α) would be close to zero, and the Coulombic mobility in equation (4.55) would

tend to . Conversely, if at any point in the device the transverse field  (also

called the confining field) is small, α would be small and f(α) would be close to one. The

resulting Coulombic mobility would then be equal to .
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4.5.1 A Semi-Empirical Model for 2D Coulombic Scattering

In Chapter 3, a first principles model for two dimensional Coulombic scattering was

presented [2], which is a non-local model since it is a function of the integrated channel

charge, Ninv  that is obtained from the local electron concentration by integration:

(4.56)

where x is the direction from the source to the drain and z is the direction from the

interface into the bulk. To arrive at a local formulation for 2D Coulombic scattering, the

transformation  is made, and all proportionality constants appearing in the

first-principles model are replaced with calibrating parameters. For Coulombic scattering,

it is found that to get the best fits, the exponents need to be perturbed as well, thus

resulting in the following model [1]:

(4.57)

Figure 4.7 The transition function f(α) from 2D to 3D Coulombic mobility.
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where n is the local electron concentration and NA is background acceptor atoms density.

The first term represents the screened and the second term represents the unscreened

Coulombic scattering. As electron density in the inversion-layer increases, the free charge

carriers screen out the Coulomb field due to the acceptor atoms, and hence, the mobility

increases. Conversely, as the free carrier concentration asymptotically goes to zero,

mobility due to the screened term also goes to zero. However, physically, as the electron

concentration decreases, mobility saturates at a constant value which is determined by

unscreened mobility. Note that the second term in equation (4.57) is independent of n and

is a function of NA only.

4.5.2 An Empirical Model for 3D Coulombic Scattering

For three dimensional Coulombic scattering, i.e. Coulombic scattering in the bulk,

the model presented by Klaassen [34] is used. There are two types of Coulombic

scattering that can occur in the bulk. Majority impurity scattering is the scattering of

majority carriers by background dopants such as the scattering of electron by donors or of

holes by acceptors. On the other hand, minority impurity scattering is that of minority

carriers by dopant atoms. This for instance would include cases such as the scattering of

electrons by acceptor atoms or the scattering of holes by donor atoms. Similarly, there are

two types of Coulombic scattering in 2D. In the previous section Coulombic scattering in

the inversion layer was discussed, which can also be considered as minority impurity

scattering. In the next chapter, 2D Coulombic scattering in MOS accumulation layer (such

as those that occur in the LDD regions of MOSFETs) would be considered and a model

presented for majority impurity scattering in 2D.

The case most often treated in bulk is majority impurity scattering, since majority

carriers are supplied by the background dopant atoms. Minority carrier scattering in 3D

only becomes significant in situations that involve carrier injection, such as in the base of

a bipolar transistor or in a p-n junction diode. Moreover, the models typically quoted for

3D majority impurity scattering also tacitly assume that the majority carrier concentration

is equal to the density of the background dopants. While such an assumption is reasonable

for majority carriers, the concentration of minority carriers is set by the degree of injection

(or inversion in the case of 2D). Thus, for minority impurity scattering, it can no longer be

assumed that minority carrier concentration is equal to the background dopant

concentration. Summing the contributions due to majority and minority impurity
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scattering via the Matthiessen’s rule, the total mobility due to Coulombic scattering in 3D

can be written as:

(4.58)

As discussed, majority impurity scattering is a function of both the carrier

concentration and the background dopant density. Hence, the expression for majority

impurity scattering takes the following form [34]:

(4.59)

The interaction of carriers with a constant perturbing potential is often treated in the

Born approximation [70] which assumes that the kinetic energy of the carriers is large in

comparison with the interaction potential. The Born approximation is a first order

formulation of the time-dependent perturbation theory which does not distinguish between

attractive and repulsive scattering potentials. Majority carriers scatter off an attractive

potential whereas minority carriers scatter off repulsive potentials; hence, their mobilities

are expected to be different. To calculate this difference, an alternative technique known

as phase shift analysis [40], [71] is used. In this technique the scattered wave is treated as

the sum of spherical waves whose phase shift with respect to the incident wave has

changed due to the scattering process. Compared to the Born approximation, phase shift

analysis is a more accurate technique, albeit computationally more expensive as well. The

ratio of repulsive to attractive scattering cross section is the same as the ratio of majority

to minority mobilities. Klaassen has modeled this ratio using a seventh-order spline

function [34]:

(4.60)

where P is a parameter that depends upon carrier concentration and temperature [34]:
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(4.61)

where m is the effective mass, mo is the free electron mass, and T is the temperature of the

electron gas. Therefore, mobility due to minority impurity scattering is obtained from the

majority impurity scattering mobility given in equation (4.59) as:

(4.62)

Equation (4.61) is derived using the Brooks-Herring approach [13], and it has a singularity

at n = 0. To remove this effect, an expression which is independent of electron

concentration is used. This approach was first used by Conwell and Weisskopf [12]. Thus,

the resulting expression for P is a suitably weighted harmonic mean of the two approaches

[34]:

(4.63)

where,

(4.64)

At ultra high dopant concentrations, clustering becomes an important consideration. This

is accounted for by replacing NA with  and ND with  according to the following

transformations [34]:

P
1.36

20×10
n

------------------------ m
mo
------ 

  T
300
--------- 

  2
=

µ3D coul,
minority µ3D coul,

majority

G P( )
--------------------=

1
P
--- 2.459

PCW
------------- 3.828

PBH
-------------+=

PBH
1.36

20×10
n

------------------------ m
mo
------ T

300
--------- 

  2
=

PCW 3.97
13×10

1
NA ND+
-------------------- T

300
--------- 

  3
2
3
---

=

NA
clus

ND
clus



Chapter 4      Numerical Modeling of the Generalized Mobility curve 91

(4.65)

Klaassen [34] notes that Matthiessen’s rule as used in equation (4.58) does not

ensure that collision events between electrons and other scattering centers are truly

two-body interactions. While equation (4.58) works well if either NA or ND dominates, in

heavily compensated regions where the probability of interacting with either dopant types

is equally likely, an approach similar to Conwell-Weisskopf [12] needs to be used in

which the impact parameter for scattering is limited to half the average separation between

scattering centers regardless of their type. Using this cut-off criterion, majority and

minority mobilities can then be lumped together as [34]:

(4.66)

where,

(4.67)

The numerical values for the parameters appearing in the model for 3D Coulombic

scattering are shown in Table 4.1.
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4.6 Semi-Empirical Modeling of the
Universal Mobility Curve

It was experimentally shown by Sabnis and Clemens [43] that if the effective

mobility of electrons in the inversion layer is plotted as a function of the effective

transverse electric field in the inversion layer, the universal mobility curve is obtained

which is independent of changes in oxide thickness, channel doping and back gate bias.

Similar results were subsequently obtained by other researchers as well [33], [9],

[76]-[79].

In the drift-diffusion formulation [7] of electron transport, the current density J is

given by . The drain current in the linear region then becomes

(4.68)

Table 4.1: Parameter set for 3D Coulombic Mobility

α1 0.69

Nref1 9.45x1016

µmax 1415.50

µmin 60.3

m 0.26mo

s1 0.89233

s2 0.41372

s3 0.19778

s4 0.28227

s5 0.005978

s6 1.80618

s7 0.72169

qnµ ϕn∇

Ids µQinvW
xd

dϕn=
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In the linear region,  if the drawn gate length is sufficiently large such

that it is approximately equal to the metallurgical channel length. Other than that, there is

no other approximation in the expression for  since the applied drain bias sets the

boundary condition for the electrochemical potential  as opposed to the electrostatic

potential  [73], [74]. Hence, the mobility µ is obtained as:

(4.69)

The problem with the expression in equation (4.69) is that due to the finite drain

bias, inversion charge density becomes a function of x, the distance from source to drain.

In the asymptotic limit of Vds tending to zero, Qinv becomes independent of x, and it is in

this case that the effective mobility in the inversion layer can be defined as:

(4.70)

Sabnis and Clemens [43] extracted µeff using the definition in equation (4.70) by

setting Vds to around 10 to 30 mV. They also discovered that if µeff is plotted as a function

of the surface transverse electric field Esurf , then the curves do not overlap if either

channel doping or substrate bias is varied. It is only for the case when µeff is plotted as a

function of Eeff that the curves overlap — the resulting curve is known as the universal

mobility curve. Since the original work various researchers have confirmed the existence

of the universal mobility curve. Sabnis and Clemens defined the effective field Eeff in the

inversion layer as the average of the field at the top of the inversion layer (i.e. the surface

field) and the field at the bottom of the inversion layer:

(4.71)

From Gauss’s law for electrostatics,
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(4.72)

Hence, effective field takes on the following form [43]:

(4.73)

Other researchers have noted that Eeff can be defined more generally as:

(4.74)

It has been experimentally observed that while η=1/2 for (100) electrons [43], η=1/3 for

(111) and (110) electrons [76], [11]. Lee et. al. [53] have shown that the difference in η
values can be explained on the basis of valley repopulation of electrons.

An accurate way to determine integrated channel charge is by integrating the data

obtained from gate-to-channel capacitance measurements [75], [95]:

(4.75)

However, Sabnis and Clemens used a first-order simplification, which holds reasonably

well in strong inversion. In the next section when we discuss the generalized mobility

curve, it will be noted that near threshold, equation (4.75) deviates significantly from the

simplified expression used by Sabnis and Clemens [43]:

(4.76)

The larger Vgs is compared to VT , the more accurate the expression in equation (4.76) is. If

the channel profile is uniform in the depth direction, Qdepl is calculated from
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(4.77)

Thus, Eeff can be determined from equations (4.73), (4.75), and (4.77).

Our approach to modeling the universal mobility curve is as follows:

(1) The model should be physically based and should reproduce all the

properties of the universal mobility curve over a wide range of oxide

thicknesses, channel dopings, and back gate bias;

(2) The model should be formulated in a completely local form since from a

device simulation point of view, local models exhibit better numerical

characteristics than non-local ones.

Lee et. al. [53] have shown that the experimentally observed universal mobility

curve can be explained on the basis of phonon and surface roughness scattering. Thus a

physically based model should contain both terms. Shin et. al. [32] present a model which

builds on the work of Schwarz and Russek [29]. However, the major deficiency in both

these works is that they only consider phonon scattering in the inversion layer. Moreover,

these models are non-local in nature, which makes them less attractive for implementation

in drift-diffusion device simulators such as PISCES [54] or PADRE [28]. While Shin et.

al. attempt to present a transformation from a non-local formulation to a local one, the

resulting model is actually a non-local one since it requires the computation of the electric

field at the bottom of the inversion layer, which for a highly non-uniform doping profile

requires a computation of the form:

(4.78)

where Zinv is the z-coordinate which marks the end of the inversion layer. Since the width

of the depletion layer is much larger than the thickness of the inversion layer, in the above

integration, Zinv can be set to zero to obtain:
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(4.79)

If coupled 2D process and device simulations need to be performed in which the output of

the process simulator gives an arbitrary doping profile, calculation outlined in equation

(4.79) would have to be performed. Thus, the model by Shin et. al., in addition to lacking

a term for surface roughness scattering, is also not a local model.

The model by Lombardi et. al. [30] provides a good starting point to model the

universal mobility curve since: (a) it is physically based with a term for phonon and

surface roughness scattering, and (b) it uses a local formulation. However, Lombardi’s

model suffers from the short coming that was discussed earlier on in Section 4.2: it is

based on the formulation given in equation (4.1) which is not entirely physical. Moreover,

in modern submicron devices, channel dopings in excess of 1017 cm-3 are fairly common,

and hence any mobility model should be calibrated such as to include this range of doping.

In the case of Lombardi’s model it was found that while it reproduces the experimentally

observed universal mobility curve for lower doping levels, it fails to follow the universal

mobility curve for channel dopings in excess of 1017 cm-3. This is shown in Figure 4.8

where the open circles represent experimental data at room temperature, and Lombardi’s

model is shown for three different channel doping levels. Ideally, Lombardi’s model

should follow the universal mobility curve for all three channel doping levels; the model

clearly breaks down at higher channel doping levels. Lombardi’s model was calibrated

against experimental data that was obtained from MOSFETs whose channel doping levels

varied from 5x1014 cm-3 to 1x1017 cm-3. The model, being semi-empirical, cannot really

be expected to yield good fits for parameters that fall outside the range of calibration.

However, the degree to which semi-empirical models may be extended outside their range

of calibration has to do with the degree of “physics” incorporated in the model. The new

model overcomes this weakness that is present in the formulation of Lombardi’s model.

It is observed in the next section that to model Coulombic scattering, it is imperative

that the model should first reproduce the universal mobility curve for higher channel

doping levels before the term for Coulombic scattering can be added. In light of the above

shortcomings in Shin’s and Lombardi’s model, a physically-based semi-empirical local

model for electron mobility is considered based on a more accurate physical formulation

which also reproduces the properties of the universal mobility curve over a wide range of

Ebottom
1
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+
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-
z( )– zd
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technology and bias conditions.

The semi-empirical terms for phonon, surface roughness and Coulombic scattering

have been discussed extensively in Sections 4.3.3, 4.4.2, and 4.5.1 respectively. To model

the universal mobility curve, we simply drop the term for Coulombic scattering in

equation (4.2) to get:

(4.80)

The model for phonon scattering appears in equation (4.30) and that for surface roughness

scattering appears in equation (4.47). Since the model in equation (4.80) is a local one, the

non-local effective mobility and non-local effective field need to be calculated in order to

compare the new model with the experimentally-obtained universal mobility curve.
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Figure 4.8 Comparison between Lombardi’s model and experimental data for three
different doping levels. Ideally, Lombardi’s model should have followed the universal
mobility curve shown by open circles for all three channel doping levels.
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Within a drift-diffusion device simulator such as PISCES, the electrostatic potential ψ , the

electron concentration n, and the hole concentration p are solved for at each node in the

device for a certain applied bias at the electrodes. During the solution procedure, the

mobility value is calculated at each node using the mobility model. The effective mobility

can be calculated, as shown in equation (4.26), at the center of the channel (i.e. half way

between the source and the drain) as a post-processing step using the information

available within the device simulator at each node.

(4.81)

where µumc(z) is supplied by the mobility model appearing in equation (4.80) and n(z) is

obtained from the device simulator via a self-consistent solution of Poisson and continuity

equations. The functional dependence on Vgs and Vbs simply indicates that this calculation

is performed each time either of the bias values change. Similarly, the effective electric

field is obtained by integration, and is also calculated in the middle of the channel using

equation (4.24):

(4.82)

where .

Calibration of the model is performed in a step-wise manner. The experimentally

obtained universal mobility curve has two distinct regimes: a low field regime in which

the slope ~ 1/3, and a high field regime in which the slope ~ 2. It is thus realized that the

phonon scattering term which goes as E-0.33 dominates at low and moderate electric fields,

whereas the surface roughness term which goes as E-2 dominates at high fields. The

results of the calibration procedure are shown in Table 4.2 . One striking feature in Table

4.2 is that except for parameter A, the agreement between the new model and the

first-principles calculation is better than the agreement between Lombardi’s model and the

first-principles calculation. In particular, the parameters B and γ in the new model are one
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order of magnitude closer to the first-principle’s value than Lombardi’s model. The fact

that these parameters are closer to the theoretical values implies that the new formulation

given in equation (4.2) exhibits a physical consistency.

With the values appearing in Table 4.2, the new model reproduces the universal

mobility curve over a wide range of channel doping levels as shown in Figure 4.9. Here

the doping level is varied about three orders of magnitude from 3.9x1015 to 2.4x1018 cm-3,

and excellent fits are obtained between the new model and experimental data. In contrast

with Lombardi’s model, the new model follows the universal mobility curve very well.

The other important property of the universal mobility curve [33], [43] is its

invariance to changes in oxide thickness and back gate bias. In Figure 4.10, both

variations are shown separately. First, oxide thickness is kept constant at 250 Å, and back

gate bias is varied from 0 to -5 volts. In this case, the two curves represented by a solid

line and a dashed one are seen to overlap. Then, back gate bias is kept constant at zero

volts, and oxide thickness is varied from 250 to 500 Å. In this case as well, the curves

overlap.

4.7 Semi-Empirical Modeling of the
Generalized Mobility Curve

It was first reported by Takagi et. al. [9] that at high channel doping levels, marked

deviations are observed from the universal mobility curve at low carrier concentrations

Table 4.2: Parameter set for the new Local-Universal Mobility Model

Parameter Lombardi’s Model New Model First-Principles’
calculation values

A 4.75x107 9.0x105 3x108

B 1.74x105 1.32x106 3x107

γ 0.125 0.057 0

C 3.97x1013

5.82x1014 3.0x1014--4.4x1014 2.83x1015
δ CNA

γ
=
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(i.e. at low transverse effective fields). They attributed these deviations from universality

as being due to increased Coulombic scattering owing to large number of dopant atoms in

the channel. Other researchers have obtained similar experimental results which also

indicate that increased impurity scattering causes significant reduction of mobility near the

threshold region of operation [53], [80], [81]. These deviations are concentrated near the

region where the gate voltage is close to the threshold voltage. For voltages much greater

than VT , the deviations disappear, and the universal mobility curve behavior is restored.

Since, Coulombic scattering has only a partial effect on the universal mobility curve, we

term the resulting curves as the generalized mobility curves. A set of experimentally

obtained generalized mobility curves are shown in Figure 4.11.

It’s well known that at low temperatures, Coulombic scattering becomes important

in semiconductors [8], while at room temperature phonon scattering is dominant. The

results obtained by Takagi et. al. [9] however indicate that even at room temperature,

Figure 4.9 Comparison between the new model and the experimental universal
mobility curve obtained by Takagi et. al. [9]. The new model exhibits excellent fits as
channel doping is varied over three orders of magnitude.
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Coulombic scattering is important if the number of Coulombic scattering centers is

extremely large. Thus, the reason why the universal mobility curve was observed by

Sabnis and Clemens [43] and by other researchers is that the MOSFET devices they

considered had low substrate dopings.

A detailed theoretical analysis for Coulombic scattering was presented in the

previous chapter. There it was observed that Coulombic scattering is really a function of

the integrated channel charge, Ninv , and not of the effective electric field, Eeff . However,

the universal mobility relationship is between effective mobility and effective field.

Hence, when Coulombic scattering dominates, it is not expected to follow the universal

mobility curve, as observed experimentally in Figure 4.11.

Since Coulombic scattering causes a deviation from the universal mobility curve, the

starting point for modeling purposes would be an accurate model for the universal
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Figure 4.10 Universal mobility curves obtained from the new model in equation
(4.80) remain invariant to changes in oxide thickness and back gate bias.
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mobility curve. Such a model (equation (4.80) ) was presented in Section 4.6. In this

section, the model is extended to account for the deviations from the universal mobility

curve. The extended formulation was discussed earlier in Section 4.2, and the resulting

equation includes the terms for Coulombic, phonon, and surface roughness scattering (see

equation (4.2) ). In Section 4.6, phonon and surface roughness scattering models were

used for purposes of modeling the universal mobility curve. In this section, the Coulombic

scattering model, primarily developed in Section 4.5, would be invoked to model the

generalized mobility curve shown in Figure 4.11. For Coulombic scattering, the principal

equation is given by (4.55):

(4.83)

Here, f(α) is given by equation (4.54), where α = ∆ε / kT is given by equation (4.53). The

model for 2D Coulombic scattering is specified by equation (4.57), and the model for 3D
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Coulombic scattering appears in equations (4.63)-(4.67).

Shin et. al. [80] have presented a model for electrons that includes Coulombic

scattering due to ionized channel impurities as well. However, this model [80] is based on

their earlier work [32], which as argued in Section 4.6 has the weakness of not being a

local model. Hence, it is not the most suitable model for implementation in device

simulators. Moreover, the model used for Coulombic scattering in their work [80] is based

directly on the well-known Brooks-Herring model [13], which was formulated for a three

dimensional electron gas. While they have included sufficient number of calibrating

parameters to fit Brooks-Herring model with experimental data, this approach is

unnecessary in light of the simple model presented in Section 4.5.1 for 2D Coulombic

scattering. Finally, Shin et. al. overlook an important term in their model for Coulombic

scattering — the unscreened mobility term. Their model has a numerical singularity at low

electron concentrations, which is prevented by the unscreened term in equation (4.57).

Shirahata et. al. [82] have also proposed a model for inversion layer electrons that

includes Coulombic scattering. However, this approach is purely empirical with little

physical basis. Moreover, the scattering mechanisms have not been partitioned in a

physical fashion as presented in equation (4.2). In the next chapter, equation (4.2) provides

an essential starting point for extending the inversion layer mobility model to

accumulation layers. A significant drawback with Shirahata’s model is that it provides no

means to enforce mutual exclusivity (discussed in Section 4.2). Hence, it cannot be

extended to model accumulation layers. Equally important, Shirahata’s model also omits

the term for unscreened Coulombic scattering, which results in a numerical singularity

when the electron concentration goes to zero.

The model presented for 2D Coulombic scattering in equation (4.57) derives its

physical basis from the theoretical analysis presented in the previous chapter. It is fully

local in nature and remains bounded in the asymptotic limit of electron concentration

going to zero.

Defining the total model as µgmc , it is given by the equation appearing in (4.2):

(4.84)

where µumc is given by equation (4.80) and µCoul is given by equation (4.83). Figure 4.12

1
µgmc
----------- 1

µumc
----------- 1

µCoul
-------------+=
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shows how µgmc varies with distance from the interface for a particular device (NA =

7.7x1017 cm-3) biased in strong inversion (Eeff = 9.0x105 V/cm). Away from the interface,

the mobility initially increases because phonon and surface roughness mobilities are

increasing. The mobility then peaks and starts decreasing as Coulombic mobility takes

over. Coulombic mobility decreases away from the interface because of a decrease in

carrier concentration. As shown in Fig. 4.13, Coulombic mobility near the interface is

dominated by the 2D term, whereas further away from the interface, the 3D term

dominates.

Calibration of equation (4.84) essentially requires the calibration of µCoul since

calibration of µumc was performed in the previous section. For µCoul , it is really 2D

Coulombic scattering that needs to be calibrated as given in equation (4.57); the 3D
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Coulombic scattering model has already been calibrated to bulk data [34]. Since the model

appearing in equation (4.84) is local, the non-local effective mobility is obtained in a

similar fashion as the non-local µumc was obtained in equation (4.81):

(4.85)

Effective transverse electric field, Eeff , is determined in the middle of the channel using

equation (4.82).

The calibration of µgmc is a two step process: first, parameters appearing in equation

0 50 100 150 200 250
Distance from the interface (A)

10
1

10
2

10
3

10
4

10
5

10
6

C
o

u
lo

m
b

ic
 M

o
b

ili
ty

 (
cm

2 /V
-s

)
Net Coulombic Mobility
2D Coulombic Mobility
3D Coulombic Mobility

screened 2D

unscreened 2D

Eeff=9.0x10
5
 V/cm

NA=7.7x10
17

 cm
-3

3D

Net Coulomb

Figure 4.13 Variation of Coulombic mobility with distance from the interface for a
MOSFET biased in strong inversion. The cross section is taken at the center of the
channel.

µeff
L
2
--- Vgs Vbs, , 

 
µgmc

L
2
--- z Vgs Vbs, , , 

  n
L
2
--- z Vgs Vbs, , , 

 ⋅ zd∫
n

L
2
--- z Vgs Vbs, , , 

  zd∫
--------------------------------------------------------------------------------------------------------=



Chapter 4      Numerical Modeling of the Generalized Mobility curve 106

(4.57) for  are perturbed, and then µeff is calculated using equation (4.85). This

process is repeated until a good match with experimental data (shown in Fig. 4.11) is

obtained. The results of this calibration procedure are presented in Table 4.3. It should be

mentioned that the procedure described above calibrates the screened part of ; the

unscreened part is calibrated against the data whose extraction was presented in Section

3.5.

With this parameter set, the comparison between the new model and the

experimental generalized mobility curve is shown in Figure 4.14. Excellent agreement is

obtained between the new model and experimental data over a wide range of channel

doping levels.

The effect of back-gate bias on the GMC is to primarily shift the mobility roll-off

point which directly corresponds to the threshold voltage. As shown in Fig. 4.15, the new

model exhibits excellent agreement with experimental data over a wide range of back-gate

bias.

It was discussed in Section 3.3 that screening due to free carriers is stronger in 3D

compared to 2D, because of which Coulombic mobility in 3D is higher than that in 2D.

This result was observed both experimentally and theoretically in Figure 3.2 in which µeff

is plotted as a function of Ninv . Similar results are also observed in Figure. 4.16 which is a

plot of µeff versus Eeff . As can be seen from Figure 4.16, the Brooks-Herring model needs

to be “calibrated” for both magnitude and screening dependence in order to fit

experimental data [80].

Table 4.3: Parameter set for the 2D Coulombic Scattering Model

D1 1.35x1011

α 1.5

β1 2.0

D2 4.0x1010

β2 0.5

µCoul
2D

µCoul
2D
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4.8 Summary

In this chapter, a physically-based semi-empirical local mobility model for

inversion-layer electrons is presented that includes terms due to phonon, surface

roughness, and Coulombic scattering. It is demonstrated that the new model reproduces all

the properties of the universal and the generalized mobility curve over a wide range of

technology and bias conditions. The new model has been formulated in local terms since

that is the preferred form of implementation in drift-diffusion devices simulators such as

PISCES. A summary of the numerical formulation of the model is presented below.

In the new model, the three scattering mechanisms are combined together in a

physically correct fashion that ensures mutual-exclusivity:
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Figure 4.14 Comparison between the simulated generalized mobility curve obtained
from the new local model (see equation (4.84)) and the experimental generalized
mobility curve obtained by Takagi et. al. [9].
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(4.2)

The model for phonon scattering consists of a 2D and a 3D term. The semi-empirical

model for 2D phonon scattering is obtained from a first-principles analysis, whereas an

empirical model is used for 3D phonon scattering. Phonon mobility is given by:

(4.30)

where θ= 2.285, NA is the acceptor density and E⊥  is the local transverse electric field.

Other parameters appearing in equation (4.30) are given in Tables 4.1 and 4.2. Surface

roughness scattering is a 2D effect and its semi-empirical model is obtained from a
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first-principles calculation as:

(4.48)

The parameter appearing in equation (4.47) is given in Table 4.2. In the case of Coulombic

scattering, the 2D and the 3D terms are combined together via a transition function f(α) as:

(4.55)

where,

(4.54)

Figure 4.16 Comparison between the new 2D model for Coulombic scattering (see
equation (4.57)) and the 3D Brooks-Herring model [13]. B-H model is seen to over-
predict mobility since screening is stronger in 3D compared to 2D.
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and λ = 2 and η = 1/2. The parameter α is calculated from the local transverse electric

field as:

(4.53)

The semi-empirical formulation for 2D Coulombic mobility considers both screened and

unscreened scattering, and is obtained from a first-principles calculation as:

(4.57)

The empirical model for 3D Coulombic scattering consists of both majority and minority

impurity scattering, and is given as:

(4.66)

where,

(4.67)

The G(P) term accounts for the fact that electrons scatter differently from attractive and

repulsive potentials, and it is modeled as a seventh-order spline function:

(4.60)

where P is a screening parameter that is obtained as:
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(4.63)

and,

(4.64)

For ultra high dopant concentration, clustering becomes an important consideration. This

is accounted for by replacing NA with  and ND with  everywhere in the 3D

model for Coulombic scattering. The clustering transformations are given by:

(4.65)

The parameters for Coulombic scattering appear in Tables 4.1 and 4.3.
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Chapter 5

A Unified Model for Inversion and
Accumulation Layer Electrons

5.1 Introduction

An important metric characterizing the performance of MOSFETs for digital

applications is Ion which is defined as Ids under conditions of maximum bias at both the

gate and drain electrodes (i.e. Vgs = Vds = Vdd ). If we define the total MOSFET resistance

as Vds /Ion , then it can be viewed as the sum of an intrinsic and an extrinsic part:

(5.1)

where Rint corresponds to the channel (i.e. inversion-layer) resistance and Rext corresponds

to all parasitic resistances appearing in the device. For velocity saturated MOSFETs [5],

the expression for channel resistance can be written as:

(5.2)

where υsat is the saturation velocity of carriers in the inversion layer, Lmet is the length of

the channel measured from the source-channel metallurgical junction to the drain-channel

metallurgical junction, Tox is the oxide thickness, and other symbols take on their usual

Rtot Rint Rext+=

Rint

Vdd VT–( )
υsatLmet

µeff
--------------------+ Tox

WeffυsatεoxVdd Vdd VT–( ) 2
----------------------------------------------------------------------=
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meaning. It can be seen from equation (5.2) that reduction in oxide thickness has a bigger

impact on channel resistance than reduction in channel length. Since, both parameters are

reduced in MOSFET scaling, the result is a significant reduction in channel resistance

despite the onset of velocity saturation.

At the same time, limitations imposed by hot-carrier reliability severely restrict the

degree to which the parasitic resistance appearing in the LDD region of a MOSFET can be

reduced [19]. As a result, channel resistance in scaled MOSFETs has been decreasing at a

faster rate than parasitic resistance. While in long channel MOSFETs, the total resistance

between the source and drain contacts is dominated by the inversion-layer component, in

submicron MOSFETs, parasitic resistance has become a significant fraction of the total

resistance. Therefore, to accurately predict the I-V characteristics of such devices, it has

become imperative to take into account the degradation caused by the LDD parasitic

resistance [3]. Realizing its importance, much work has been reported on the analytical

modeling of the parasitic source-drain series resistance for both LDD [24]-[26] and

non-LDD MOSFETs [20]-[23].

In the previous chapter, a semi-empirical mobility model was presented that

incorporated the important scattering mechanisms operating in the inversion layer. While

the accumulation layer in the LDD region of a MOSFET is similar in many respects to the

inversion layer in the channel, certain fundamental differences exist because of which the

nature of some of the scattering mechanisms is different in the accumulation layer. Hence,

it cannot be expected of a mobility model calibrated for the inversion layer to be able to

correctly calculate mobility in the accumulation layer.

In this chapter, a unified model for inversion and accumulation layer electrons is

presented that builds on the model presented in the previous chapter. The new model is

semi-empirical and local in nature. A systematic simulation methodology for deep

submicron LDD MOSFETs based on the new mobility model is presented, and it is shown

to produce excellent agreement with experimental data over a wide range of bias

conditions (subthreshold, linear, and saturation) and channel lengths down to 0.25µm.

The organization of this chapter is as follows. In Section 5.2, the impact of LDD

resistance in various deep submicron technologies is evaluated through coupled 2D

process and device simulations. In Section 5.3, problems with existing simulation

methodologies are discussed, and in Section 5.4 a systematic simulation methodology

requiring the use of accumulation-layer mobility models is proposed. In Section 5.5, a
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unified model for accumulation and inversion layer electrons in presented. This model

builds on the work presented in the previous chapter which was concerned with the

modeling of the generalized mobility curve. In Section 5.6, comparison between

simulation and measurement results is presented for a 0.25µm technology. Excellent fits

are obtained over a wide range of channel lengths and terminal biases. Conclusions are

presented in Section 5.7.

5.2 Parasitic resistance in submicron LDD MOSFETs

Figure 5.1 is a schematic illustration of the various components contributing to

parasitic series resistance in an LDD MOSFET, namely: (i) the resistance beneath the

contact window, (ii) the sheet (diffusion) resistance of the source/drain and LDD regions

where the current flow is laminar, (iii) the spreading resistance in the vicinity of the gate

edge where current crowding/spreading takes place, and (iv) the accumulation-layer

resistance occurring in the overlap region between the gate and the LDD region [24].

To asses the magnitude of the voltage drop in the extrinsic region of the device,

coupled 2-D process and device simulations of a realistic 0.25µm technology [37] were

performed using the process simulator PROPHET [27] and the device simulator PADRE

intrinsic

extrinsic

spreading

contact

n+ sheet LDD sheet
accumulation

inversion

Poly-Silicon Gate
spacer

Figure 5.1 Schematic cross-section of one half on an LDD MOSFET. The various
components of the extrinsic resistance are shown.
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[28]. In Figure 5.2, the doping profile obtained from PROPHET simulations and the

corresponding electron density in strong inversion obtained from PADRE simulations is

shown along the Si/SiO2 interface of a 0.25µm MOSFET. In the example shown, arsenic

is used as the dopant for the LDD region. For this case, note that 75% of the coded gate

length falls within the intrinsic region of the device, which is defined as the region from

source-channel metallurgical junction to drain-channel metallurgical junction.

To get an indication of the resistance in various regions of the device, the

quasi-fermi level is plotted along the Si/SiO2 interface. From conventional drift-diffusion

theory of electron transport in semiconductors [7], the current per unit width in the device

is given by:

(5.3)

Figure 5.2 Doping and electron concentration profile in strong inversion for a 0.25µm
As-LDD MOSFET.
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where x is the direction parallel to the interface, y is the direction perpendicular to the

interface, and ϕn is the electron quasi-fermi level. Due to current continuity, IDS is

independent of x, and hence the sheet resistance is simply proportional to the lateral

gradient of ϕn(x).

Figure 5.3 is a plot of ϕn(x) and dϕn/dx along the Si/SiO2 interface of the device

whose doping profile is shown in Figure 5.2. 40% of the voltage drop is in the extrinsic

region, of which 15% corresponds to the accumulation layer. This significant voltage drop

in the extrinsic region is due to the fact that the sheet resistance in the accumulation layer

and in the current-crowding/spreading region is comparable to the sheet resistance in the

inversion layer (see Fig. 5.3).

Figure 5.3 Quasi-Fermi potential drop along the Si/SiO2 interface of a 0.25µm
As-LDD MOSFET in strong inversion. The drain bias is 100mV and the gate bias is
2.5V; hence the device is operating in the linear region. Although 60% of the total
resistance is due to the channel, a significant portion (40%) comes from the extrinsic
region. The extrinsic resistance is primarily due to accumulation layer resistance and
spreading resistance.
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As another example, consider a 0.25µm MOSFET in which the LDD is doped with

phosphorus instead of arsenic. As shown in Fig. 5.4, due to the higher diffusivity of

phosphorus compared to arsenic and also due to its transient enhanced diffusion [38], the

overlap region between the LDD and the gate is larger, resulting in shorter metallurgical

channel length. Thus, as can be seen from Fig. 5.5, due to the longer accumulation region,

more than half of the applied voltage drops outside the intrinsic region.

It might be expected that for longer channel lengths the impact of parasitic series

resistance on device performance would be less due to the higher channel resistance.

However, this is not necessarily the case since longer channel-length technologies are

designed to operate at a higher Vdd and hence require LDDs with less peak doping and a

more gradual doping profile to alleviate hot carrier effects. For instance, the LDD dose

Figure 5.4 Doping profile and electron concentration profile in strong inversion
for a 0.25µm As-LDD MOSFET. Compared to the doping profile shown in Figure
5.2, the length of the accumulation layer is longer because of the higher diffusivity
of phosphorus.
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would be lower and the thermal budget higher for a 0.35µm technology designed to

operate at 3.3V Vdd compared to a 0.25µm technology designed to operate at 2.5V Vdd.

A comparison among the three technologies is presented in Table 5.1. As can be seen

from Table 5.1, a significant portion of the voltage drops in the extrinsic region of the

device, thus requires accurate modeling of the LDD region in order to predict its impact

on the terminal characteristics of deep submitting MOSFETs.

Figure 5.5 Quasi-Fermi potential drop along the Si/SiO2 interface of a 0.25µm
As-LDD MOSFET in strong inversion. The drain bias is 100mV and the gate bias is
2.5V; hence the device is operating in the linear region. Compared to the potential
drops shown in Figure 5.3, Ph-LDD devices exhibit considerably more accumulation
layer resistance. Interestingly enough though, the spreading resistance is about the
same in both cases.
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5.3 Problems with existing simulation methodology

To date, most of the mobility models for 2-D device simulation [29]-[32] that have

appeared in the literature have focused on modeling the inversion layer, since channel

resistance was considered to be the limiting factor in carrier transport. Consequently, little

attention was paid to the extrinsic region of the device. It was clearly established in the

previous section that series resistance effects can no longer be neglected in deep

submicron MOSFETs. To this end, we point out the problems associated with existing

simulation methodologies and in the next section present an improved methodology.

Due to the lack of a model for accumulation layer mobility and the lack of

well-calibrated two-dimensional (2D) process simulation tools, the methodology most

commonly used involves the simulation of an “electrically” equivalent MOSFET (see Fig.

5.6) instead of the actual device structure. In this methodology, the gate length is taken to

be the effective channel length (Leff) instead of the coded or patterned gate length, and a

series resistance (Rseries) is specified instead of the contact resistance (Rco) at the source

and drain contacts. Implicit in this methodology is the assumption that only the vertical

doping profile in the channel is important for an accurate simulation of the device, which

for instance can be obtained through one-dimensional (1D) process simulations.

The Leff is most often defined as the spacing between the source-channel and the

drain-channel junction. Ideally, current would be confined to the surface within Leff and

then spread into the heavily doped source/drain regions. In reality, the current is confined

to the surface even beyond the metallurgical junctions because of the overlap between the

Table 5.1: LDD resistance in various technologies

Technology Inversion ∆ϕ Acc. ∆ϕ Bulk ∆ϕ Lmetallurgical

0.25µm

As-LDD

60 % 15 % 25 % 0.74 Ldrawn

0.25µm

Ph-LDD

46 % 28 % 26 % 0.56 Ldrawn

0.35µm

Ph-LDD

55 % 19 % 26 % 0.67 Ldrawn
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gate and the source/drain diffusion regions. This phenomena is more pronounced in LDD

MOSFETs which tend to exhibit significant overlap (see Fig. 5.1). The extra distance of

surface conduction (i.e. the accumulation layer in Fig. 5.1) can either be considered as part

of Leff or as part of Rseries. It is physically incorrect to consider the accumulation layer as

part of Leff since its threshold voltage and mobility are different from that of the inversion

layer. However, when considered part of Rseries, the accumulation layer resistance (Racc)

makes Rseries strongly dependent on gate voltage, since

(5.4)

where Rsp is the spreading resistance, and Rldd and Rsd are the LDD and source/drain sheet

resistances respectively.

For non-LDD MOSFETs, the overlap between the gate and the source/drain region

in self-aligned technologies is a relatively small fraction of the gate length. Thus, Racc in

Eq. (5.4) can be neglected, and since Rsp is not a very strong function of gate bias [23],

Rseries can be essentially considered as a constant. For constant Leff and constant Rseries,

several techniques exist for accurately extracting these parameters [113]. Therefore, the

Rseries
Rseries

Leff (experimentally extracted)

where Leff ≠ Lpatterned

Figure 5.6 Existing technique for simulating an LDD MOSFET. Values for Rseries

and Leff are typically obtained from experimental data, but invariably Rseries is treated
as a calibrating parameter.

Rseries Racc Vgs Loverlap,( ) Rsp Vgs( ) Rldd Rsd Rco+ + + +=
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simulation methodology shown in Fig. 5.6 can be successfully applied to non-LDD

MOSFETs.

However, in the case of LDD MOSFETs, both Leff and Rseries are functions of gate

bias [39] because of which the methodology shown in Fig. 5.6 will be met with little

success. In order to improve the comparison between simulations and measurements,

Rseries is often used as a fitting parameter. While such a practise may lead to a few good

fits, the predictive nature of TCAD can not be borne out of such a scheme. Instead, the

scheme that we propose in the next section considers every aspect of the device in a

physically correct sense. It is shown that with the improved calibration methodology, no

artificial fitting parameters need to be introduced, thus establishing the viability and

predictivity of the new simulation methodology.

5.4 Proposed Simulation Methodology

In order to accurately simulate an LDD MOSFET, the variation of Rseries with gate

bias, in particular each term appearing in Eq. (5.4), will need to be modeled properly. To

this end, the actual device structure shown in Fig. 5.7 would need to be simulated instead

of the one shown in Fig. 5.6. The patterned gate length, Lpatterned, is specified in the

simulation instead of Leff and the actual contact resistance Rco is used instead of Rseries.

Since, spreading resistance is a sensitive function of the gradient of the doping profile

[23], the doping profile would need to be specified accurately in both the lateral and the

transverse directions. Accurate calculation of accumulation layer resistance would require

a model for accumulation-layer mobility and a specification of Lov (see Fig. 5.7). Thus, a

well-calibrated two-dimensional (2D) process simulator would form an integral part of the

proposed simulation methodology.

Figure 5.8 shows the proposed simulation methodology. The doping profiles would

be provided by the process simulator PROPHET. In addition, values for contact resistance,

effective oxide thickness, and contact-to-poly spacing would need to be supplied to the

device simulator PADRE. The following issues need to be considered for an accurate

simulation of the LDD device shown in Fig. 5.7:

• Validity of 2D process simulation results.

• Extraction of contact resistance.
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RcontactRcontact

Lpatterned

Figure 5.7 Device schematic for simulating an LDD MOSFET. Rcontact information
should be supplied from measurements such as from four-probe Kelvin test structures.
Patterned gate length should also obtained from experimental data such as from
transmission electron microscopy of the gate stack. Neither Rcontact nor Lpatterned are
used as fitting parameters in this simulation scheme.

Lcp

(Rco)

LmetLov Lov

(PROPHET)

doping

geometry

DEVICE  SIMULATOR

Process
Recipe

Contact
Resistance

I-V

diffusion metal

PolyMetal

(PISCES or PADRE)PROCESS
SIMULATOR

Layout Information

Low-frequency C-V
on large-area capacitors 4-Probe Kelvin

Effective “Electrical”
Oxide Thickness

CGS

VGS

New Mobility
Model

Figure 5.8 Proposed simulation methodology involves coupled 2D process and
device simulations. The process recipe is fed to the process simulator to get the 2D
doping profiles. Effective oxide thickness and contact resistance values are
supplied to the device simulator from independent measurements. Contact-to-poly
spacing, Lcp, is obtained from layout information.
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• Specification of contact-to-poly spacing.

• Extraction of effective electrical gate oxide thickness.

• Extraction of patterned channel length for deep submicron structures.

• Model for accumulation layer mobility.

The simulation methodology will be applied to a realistic 0.25µm technology [37],

and it will be shown in the Section 5.6 that a consideration of the above mentioned issues

leads to an excellent agreement between simulation and measurement results over wide

range of channel length and terminal biases.

5.4.1 Validity of 2D Process Simulation Results

A key issue is the accuracy of process simulation results, in particular that of

predicting the doping profiles in the lateral direction. It was shown by Rafferty et. al. [38]

that the transient enhanced diffusion (TED) effect can have a significant impact on the

lateral dopant diffusion in the LDD region, which leads to the reduction of the

metallurgical channel length Lmet. Characterization of the TED effect is essential for an

accurate modeling of the lateral doping profile.

From Fig. 5.7, Lmet = Lpatterned - 2Lov , where Lpatterned is the actual patterned gate

length, and Lov is the overlap length between the gate and the LDD region. Calibration of

the TED parameter set proceeds by examining phenomena that are sensitive functions of

Lmet, such as drain-induced barrier lowering (DIBL) and reverse short channel effect in

n-channel MOSFETs. If Lpatterned is determined through a physical measurement of the

gate stack such as transmission electron microscopy (TEM), then by varying the TED

parameter set, Lov is made to vary, which consequently affects Lmet. Since Lpatterned is

known with certainty, if the TED parameter set is able to model phenomena that are

sensitive to Lmet , then that establishes that Lov is being correctly predicted by the process

simulator.

Calibration of the parameter set associated with TED has been performed by

Rafferty et. al. [38] for a 0.35µm technology. They show that this parameter set is able to

explain the reverse short channel effect and the body effect on the threshold voltage of

NMOS devices. Recently, it was shown by Vuong et. al. [114] that the same parameter set

is also able to model the DIBL effect in 0.35µm technology. Thus, the accuracy of process
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simulation results using PROPHET is fairly well established.

5.4.2 Extraction of Contact Resistance

The contact resistance, Rco, is extracted from four-probe Kelvin test structures [115].

It is important to ensure that the contacts behave linearly over the range of currents forced

through them. As the contact window shrinks in size and the current density increases,

smaller contacts start exhibiting departure from the linear Ohm’s law relationship.

However, for the present study shown in Fig. 5.9, the contacts show linear I-V

characteristics over the range of currents considered in this work.

5.4.3 Specification of Contact-to-Poly spacing

The purpose of correctly specifying the contact-to-poly spacing, Lcp, as shown in

Fig. 5.7 is to be able to correctly calculate the LDD and source/drain sheet resistances.

The value for Lcp is obtained from layout information. This is really a second order

correction, since sheet resistance is much smaller than spreading and accumulation layer

resistance (see Figs. 5.3 and 5.5). Hence, the exact value of Lcp is not very critical. Note

that if Lmask is not equal to Lpatterned, then Lcp obtained from layout information would

Figure 5.9 I-V characteristics for a 0.5µm x 0.5µm contact window.

0.00 0.05 0.10 0.15 0.20 0.25
Voltage (V)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
u

rr
en

t 
(m

A
)



Chapter 5      A Unified Model for Inversion and Accumulation Layer Electrons 125

differ from the actual Lcp in the device. This information is more critical for hot carrier

studies than for the calculation of sheet resistances.

5.4.4 Extraction of Effective Electrical Gate Oxide thickness

In deep submicron technologies with aggressively scaled dielectrics, the physical

thickness of the oxide deviates from its “electrical” thickness primarily due to the

quantum capacitance effect [119] and the poly-depletion effect [116]. With a thin

dielectric, the transverse electric field near the Si/SiO2 interface is sufficiently high to

cause significant quantization of the electron gas in the inversion layer. According to the

quantum mechanical distribution, the electron concentration peaks at a distance zm below

the interface as dictated by the nature of the wavefunction in the inversion layer [45], [48].

On the other hand, a classical calculation predicts that the electron concentration is a

maximum at the Si/SiO2 interface. 2D device simulators such as PADRE and PISCES do

not solve for Schrodinger’s equation, and hence they calculate the classical electron

distribution in the inversion layer. The principal difference that is observed between a

classical calculation (such as from PISCES or PADRE) and a quantum-mechanical

calculation (such as from a coupled 1-D Schrodinger-Poisson solver) is a rigid shift in the

Qinv-Vgs curves in the linear region [117] (i.e. incorporation of the quantum mechanical

effects causes an increase in the threshold voltage [118]). Since the classical device

simulators calculate the concentration peak to be at the surface, which in reality is zm

below the surface, the effective oxide thickness Tox,eff that should be supplied to the device

simulators is Tox+zm, where Tox is the physical oxide thickness that can, for instance, be

obtained from ellipsometric measurements [109].

Tox,eff can either be determined from a 1-D Schrodinger-Poisson solver which

calculates zm or it can be obtained directly from the gate-to-channel capacitance (Cgc)

measurements. Since zm decreases with gate bias [45] and is not really a constant, it

becomes ambiguous to specify Tox,eff by Tox+zm. However, it is known that the integrated

channel charge, Qinv, is reduced by a constant factor due to the quantum mechanical effect

[117]. Since , if the measured Cgc can be represented by

εox/Tox,eff , then PISCES and PADRE would be able to correctly calculate Qinv based on

Qinv Vgs( ) Cgc Ṽgs( ) Ṽgsd∞–

Vgs∫=
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the specification of Tox,eff .

The other factor that degrades the inversion-layer capacitance (Cinv) is the

poly-depletion effect (PDE) [116]. While the quantum correction is applicable to both

accumulation (Cacc) and inversion-layer capacitance, PDE degrades only Cinv. For an n+

doped poly on a p-type substrate, if the dopants in the poly are not completely activated,

then when the substrate is in inversion, a depletion layer will form at the poly/SiO2

interface, resulting in a lower Cinv. On the other hand, when the p-type substrate is in

accumulation, the poly/SiO2 interface is also accumulated. Hence, no degradation of Cacc

occurs. Figure 5.10 illustrates this effect, which is a plot of measured-Cgc as a function of

gate bias.

Due to these two effects, Tox,eff extracted from the measured Cinv is invariably found

to be larger than the physical value for oxide thickness Tox [36].
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Figure 5.10 Measured gate-to-channel capacitance for a 55Å gate oxide. Due
to poly-depletion effect, the capacitance in accumulation is larger than that in
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quantum-mechanical nature of the electron distribution.
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5.4.5 Extraction of Patterned Channel Length

The masked channel length can differ from the patterned channel length, Lpatterned,

due to a lack of process control, which for instance can lead to an over-etch of the gate

electrode [111]. If the over-etch is a significant fraction of the masked channel length, then

it is essential to determine the actual patterned channel length for an accurate simulation

of the device. In the absence of TEM measurements, Lpatterned can also be extracted from

electrical measurements [108]. The two parameters most sensitive to Lpatterned are the

off-state leakage current (Ioff) and the output conductance (gd) in saturation. Since the

TED parameter set in PROPHET is well calibrated to the 0.35µm technology, it is

assumed that the same parameter set would be able to accurately predict Lov (see Fig. 5.7)

in the next-generation 0.25µm technology.

In deep submicron MOSFETs, Ioff continues to increase with drain bias unlike long

channel MOSFETs in which it saturates for Vds much greater than kT/q [93]. This effect in

short-channel MOSFETs is due to drain-induced barrier lowering (DIBL). While in long

channel MOSFETs, DIBL is proportional 1/L [93], it has been analytically shown by

Biesemans and Meyer [112] that for short channel devices, DIBL ~ , where Lmet is

the metallurgical channel length and λ is a scaling parameter. The objective then is to use

the DIBL information (or equivalently, the I-V curves in subthreshold as a function of

drain bias) to extract the “actual” channel length.

For the 0.25µm technology considered in this study, Lpatterned for 0.25µm and 0.3µm

devices was obtained by trying to match the experimentally-observed DIBL with that

predicted by simulation results. Since DIBL is a sensitive function of Lmet, and assuming

that Lov is being correctly predicted by PROPHET, simulation results can be matched with

experimental results by varying Lpatterned in the simulations. Since both devices resided on

the same die, it was found that the same amount of length reduction for each yielded fairly

good fits with experimental data. The results after reduction of the masked length are

shown in Fig. 5.11. It was found that devices with channel lengths greater than 0.4µm did

not exhibit any measurable DIBL effect, and hence no reduction to the masked channel

length was required.

e
Lmet λ⁄–
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(a)

(b)

Figure 5.11 Comparison between simulated and measured results in subthreshold
for (a) 0.25µm gate length, and (b) 0.3µm gate length, after gate lengths have been
reduced to achieve best fits.

0.0 0.5 1.0 1.5 2.0 2.5
Gate Voltage (V)

10
-13

10
-11

10
-9

10
-7

10
-5

10
-3

D
ra

in
 C

ur
re

nt
  (

A
/µ

m
)

Exp. Data: VDS=0.1V
Exp. Data: VDS=2.5V
New Model

Lmask=0.25µm

0.0 0.5 1.0 1.5 2.0 2.5
Gate Voltage (V)

10
-13

10
-11

10
-9

10
-7

10
-5

10
-3

D
ra

in
 C

ur
re

nt
 (

A
/µ

m
)

Exp. Data: VDS=0.1V
Exp. Data: VDS=2.5V
New Model

Lmask=0.30µm



Chapter 5      A Unified Model for Inversion and Accumulation Layer Electrons 129

5.4.6 Model for Accumulation Layer Mobility

Due to the two-dimensional nature of the electron gas in the accumulation layer, a

mobility model similar in form to the one for an inversion layer is required to accurately

calculate the resistance in an accumulation layer. Mobility degradation in the

accumulation layer occurs in much the same way as it does in the inversion layer due to

the transverse electric field. The primary difference arises in Coulombic scattering, which

is stronger in the accumulation layer compared to the inversion layer [1], [3].

To establish the importance of a model for accumulation layer mobility in trying to

predict the I-V characteristics of LDD MOSFETs, simulations were performed using a

mobility model applicable only in the inversion layer [1]. The mobility in the

accumulation layer was simply set to the bulk value. Based on the methodology shown in

Fig. 5.8, linear region simulations for a 0.25µm device were performed with the

inversion-layer mobility model. Results are shown in Fig. 5.12, from which it can be seen

that due to the over-prediction of mobility in the accumulation layer, a higher drain current

is observed.

5.5 Formulation of the Unified Model

Having discussed the need to model accumulation layer mobility, the starting point

for the unified model is the formulation presented in Section 4.2 for inversion layer

electrons:

(5.5)

For each of the scattering mechanisms appearing in equation (5.5), there is a 2D term and

a 3D term. Previously, the 2D term only modeled the inversion layer electrons, which is

now extended to model the accumulation layer mobility as well. The hierarchical

taxonomy of the resulting unified model is shown in Fig. 5.13. The following three

sections present a unified treatment of inversion and accumulation layer electrons for

phonon, surface roughness, and Coulombic scattering respectively.

1
µunified
----------------- 1

µphonon
------------------ 1

µsurface roughness
---------------------------------------- 1

µCoulomb
---------------------+ +=
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5.5.1 Phonon Scattering

In Section 4.3, phonon scattering in MOS inversion layers was considered. In this

section, the formulation will be extended to treat accumulation layers as well.

The potential well that creates inversion layer electrons is the same one that creates

accumulation layer electrons. The fundamental difference between the two is that an

inversion layer is a strictly 2D electron gas (2DEG) whereas an accumulation layer is the

union of a 2DEG residing in the sub-bands near the interface and a 3DEG which forms a

continuum in the silicon bulk [107]. From Fig. 5.13, it can be seen that the model for

phonon scattering has a 2D term and a 3D term. Therefore, description of the

accumulation fits in very naturally in the formulation of the model: the 2D aspect of the

accumulation layer is combined with the inversion layer model, whereas the 3D aspect is

simply 3D phonon scattering, for which a model already exists. The task of modeling
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Figure 5.12 Simulation of a 0.25µm LDD MOSFET with a mobility model
formulated for the inversion layer only.
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phonon scattering in accumulation layers then reduces to only considering its 2D aspect.

The 2DEG in an accumulation layer is identical to the 2DEG in an inversion layer

[107]. Therefore, the same deformation potential for 2D phonon scattering (see Section

4.3.2) would hold for both layers. However, the dielectric screening function (see Section

3.2.2 for definition) in an accumulation layer would be different from that in an inversion

layer due to the presence of the continuum of electrons beneath the 2DEG. However, an

electron gas is not very effective in screening a phonon deformation potential [106];

hence, the same effective scattering potential would hold for both layers. Therefore,

phonon mobility in accumulation layers would be described by the same formulation as

for inversion layers. A semi-empirical model for inversion layer electrons is given in

Section 4.3.3:

(4.25)

Mobility

Surface
Roughness CoulombPhonon

2D 3D 3D 2D2D

ACC INV INVACC ACC

Exclusive OR Matthiessen’s sum

Summation via Matthiessen’s Rule

Minimum Function 2D/3D Transition Function

Figure 5.13 Hierarchical taxonomy of the unified model for inversion and
accumulation layer electrons.
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where NA is the background acceptor dopant density. In accumulation layers, electrons

interact with donor atoms; hence, replacing NA by ND , the model for phonon scattering in

accumulation layers becomes:

(5.6)

The theoretical results derived above are in complete agreement with the

experimental findings of Sun and Plummer [33] who showed that accumulation and

inversion layer electrons follow the same universal mobility curve.

By noticing that for all cases of interest, either NA or ND dominates, accumulation

and inversion layer mobilities can be combined into one single equation as:

(5.7)

In the channel , and equation (4.25) is recovered, whereas in the LDD region

 , and equation (5.6) is recovered.

The expression for total phonon mobility given in equation (4.30) for inversion layer

electrons now transforms to:

(5.8)

Refer to Section 4.3.4 and Table 4.2 for parameter values appearing in the above model.

5.5.2 Surface Roughness Scattering

As in the case for phonon scattering, if screening is neglected, the same scattering

potential due to surface roughness would be seen by the accumulation and inversion layer

electrons. The semi-empirical model for inversion layer electrons is given in Section

4.4.2:
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(4.47)

Since the model for accumulation layer electrons is similar, we get:

(5.9)

If we assume that the “degree” of surface roughness along the Si/SiO2 interface in the

gate-LDD overlap region is the same as in the channel region, then , and the

resulting model for surface roughness becomes

(5.10)

5.5.3 Coulombic Scattering

The principal difference between Coulombic scattering in accumulation and

inversion layers is that in an accumulation layer, electrons scatter off positively charged

donor atoms, whereas in an inversion layer, electrons scatter off negatively charged

acceptor atoms. Coulombic scattering potentials were calculated in Section 3.2 under the

Born approximation [70] which assumes that the kinetic energy of the electrons is much

larger than the interaction potential due to the impurity atom. Being a first order

approximation to time-dependent perturbation theory [70], the Born approximation does

not differentiate between repulsive and attractive Coulomb potentials [40]. However,

more accurate phase-shift analysis reveals that electrons are scattered more strongly from

attractive than from repulsive potentials [40]. Intuitively, one can imagine that a repulsive

scattering center never lets the carriers get close enough for them to experience a strong

potential that would eventually scatter them off more strongly.

The ratio between attractive and repulsive carrier mobility has been modeled by

Klaassen [34] using a seventh-order spline function (also see equation (4.60) in Section

4.5.2):
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(5.11)

where P is a parameter that depends on electron concentration and temperature [34] (also

see Section 4.5.2). A semi-empirical model for 2D Coulombic scattering in the inversion

layer was presented in Section 4.5.1 :

(4.54)

The function G(P) is formulated for a 3D electron gas. Nevertheless, we apply this

function to the 2D electron gas. The accumulation layer mobility is obtained by replacing

NA with ND in equation (4.57) :

(5.12)

The 2D Coulombic mobility is obtained from inversion and accumulation layer

mobilities via the Matthiessen’s rule’s summation:

(5.13)

The expression for total Coulombic mobility is given by equation (4.55):

(4.52)

where expressions for  and  are given in Section 4.5.

5.5.4 Total Mobility including Longitudinal Field degradation

The unified mobility model given by equation (5.5) considers the variation of

mobility with transverse electric field, electron concentration, and ionized impurity
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concentration. The scattering mechanisms that lead to this mobility — acoustic phonon,

surface roughness, and Coulombic scattering — are all elastic in nature (i.e. they do not

change the kinetic energy of the carriers). When carriers heat up under the action of an

applied electric field, another scattering mechanism — optical phonon scattering —

becomes important which is inelastic in nature. Since, carrier heating is caused by the

component of electric field parallel to the velocity of electrons, the degradation in mobility

due to optical phonon scattering is modeled semi-empirically via the longitudinal electric

field E||. In the inversion layer, E|| is created by drain bias whereas E⊥  (transverse electric

field) is caused by gate bias. When all four scattering mechanisms are considered together,

the resulting semi-empirical expression for total mobility is given by

(5.14)

where the model for longitudinal field degradation is due to Hansch et. al. [35], and vsat is

the saturation velocity in the inversion layer.

5.6 Results

As an illustration of the methodology presented in the Section 5.4, simulations were

performed for a 0.25µm technology using the unified mobility model developed in the

previous section. Simulations have been performed over a wide range of channel lengths

for the linear and saturation regimes. For each channel length, the doping profile of the

device was obtained from PROPHET. Since, the experimental data across channel lengths

came from devices residing on the same die (reticle), inter-die variation was not an issue.

Contact resistance measurements were performed on Kelvin test structures present on the

same die as the MOSFETs. Similarly, the capacitance measurements were performed on

large area capacitors present on the same die. Thus, the values extracted for contact

resistance and the effective electrical gate oxide thickness can be related directly to the

devices since inter-die variation is not a concern.

The first simulation that was performed was for a 20µm MOSFET operating in the

linear region. The purpose of this simulation is to test the inversion part of the unified
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model and the validity of the extraction of the effective gate oxide thickness. For such a

long channel device, series resistance does not degrade the I-V characteristics since

channel resistance is dominant. Thus, the accuracy of accumulation layer mobility and

lateral doping profile is not an issue. If the threshold voltage for this device is predicted

correctly, that establishes that the value for oxide thickness and the doping profile in the

vertical direction has been correctly specified. Next, the measured and simulated results

are compared in the high gate bias regime (i.e. Vgs = Vdd). In this regime, due to high

transverse electric fields, mobility is primarily limited by surface roughness scattering

[53]. The parameter appearing in the model for surface roughness scattering cannot be

considered as a “universal” parameter unlike those appearing in the model for phonon and

Coulombic scattering since it is directly dependent on the quality of the Si/SiO2 interface.

Based on the discrepancy observed in the high gate bias regime, the parameter for surface

roughness scattering is adjusted to achieve the best possible fit. Results after this fitting are

shown in Fig. 5.14, which also show that the threshold voltage is being calculated

correctly.
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Figure 5.14 Comparison between simulated and measured results for a 20.0µm
MOSFET after adjustment of the surface roughness parameter.
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Next, linear region simulations for short channel devices are performed. Since, the

inversion part of the model, the value for effective oxide thickness, and the vertical doping

profile information was validated through simulations of a long channel device,

simulations of short-channel devices would test the validity of the model for accumultion

layer mobility, extraction of the contact resistance, and lateral doping profile information.

While each of these parameters have been separately calibrated, these simulations would

serve to establish the validity of the overall framework of the simulation methodology.

Figure 5.15 presents the linear-region comparison between simulation and measured

results for gate lengths varying from 0.5µm to 0.25µm. Considering Fig. 5.14 as well,

excellent fits are obtained over a wide range of channel lengths. It should be emphasized

that the same parameter set in the mobility model is able to produce these results across

channel lengths.

The final step is to simulate the saturation region characteristics. Figure 5.16

presents the comparison between simulation and measurement results in the saturation

region for MOSFETs with gate lengths ranging from 0.25µm to 20µm. Good agreement is

obtained across these gate lengths, establishing the applicability of the new model over a

Figure 5.15 Comparison between simulation results and measured data in the
linear region for gate lengths ranging from 0.5µm to 0.25µm. It should be noted that
the fits for all the shown gate lengths are produced by one mobility parameter set.
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Figure 5.16 Comparison between simulated and measured results in saturation for
MOSFETs with gate length: (a) 0.25µm, (b) 0.3µm, (c) 0.4µm, (d) 0.5µm, and (e)
20.0µm.

(a)

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Drain Voltage (V)

0.0

0.1

0.2

0.3

0.4

0.5

D
ra

in
 C

ur
re

nt
  (

m
A

/µ
m

)

Exp. Data
New Model

2.5V

2.0V

1.5V

1.0V

0.5V

Ldrawn = 0.25µm

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Drain Voltage (V)

0.0

0.1

0.2

0.3

0.4

0.5

D
ra

in
 C

ur
re

nt
 (m

A
/µ

m
)

Exp. Data
New Model

2.5V

2.0V

1.5V

1.0V

0.5V

Ldrawn = 0.30µm



Chapter 5      A Unified Model for Inversion and Accumulation Layer Electrons 139

(c)
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wide range of device geometries and terminal biases.

5.7 Summary

Using 2D process and device simulations, it was shown in this chapter that the

parasitic series resistance in deep submicron LDD MOSFETs has become comparable to

the intrinsic channel resistance. It was demonstrated that conventional mobility models

formulated for the inversion layer fail to accurately reproduce the I-V characteristics of

LDD MOSFETs. In an effort to model the extrinsic resistance of the device, a model for

accumulation layer mobility was developed that considered phonon, surface roughness,

and Coulombic scattering in the accumulation layer.

A systematic simulation methodology was presented which emphasized the

consideration of the following issues for an accurate simulation of LDD MOSFETs:

• validity of 2D process simulation results

• extraction of contact resistance

• specification of contact-to-poly spacing

• extraction of effective electrical gate oxide thickness

• extraction of patterned channel length for deep submicron structures

• a unified model for inversion and accumulation layers

Excellent fits with measured I-V characteristics of a realistic 0.25µm technology

over a wide range of channel lengths and terminal biases were demonstrated with the help

of the proposed simulation methodology.
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Chapter 6

Conclusion

6.1 Summary

In summary, we have examined the theoretical issues related to the modeling of

mobility and suggested new measurements to enhance existing calibration techniques. The

study of mobility was motivated by the fact that it is one of the most important parameter

affecting the I-V characteristics of MOSFETs. In that regard, two particular issues —

Coulomb scattering and LDD resistance — were studied that have emerged in recent years

due to the continued scaling of MOSFETs to deep submicron dimensions. The objective of

this research was to develop physically-based mobility models, and the approach taken to

achieve this was to start with a first-principles calculation of mobility, and then proceed to

semi-empirical and empirical forms by means of calibration techniques. The major

findings and results of this research are summarized below.

6.1.1 2D Coulombic Scattering in MOS inversion layers

1. A first-principles calculation of two dimensional Coulombic scattering was

performed for inversion layer electrons. It was demonstrated that for both

screened and unscreened scattering, the new 2D model exhibited better

agreement than classical 3D models.

2. A new systematic technique was presented for extraction of unscreened

Coulombic scattering that involved classical and quantum simulations and

required the use of I-V and C-V data.
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3. It was demonstrated that accurate prediction of threshold voltage and off-state

leakage current in heavily doped MOSFETs requires the use of well-calibrated

models for Coulombic scattering in device simulators.

6.1.2 A Semi-Empirical Model for the Generalized Mobility Curve

1. Semi-empirical models for phonon, surface roughness, and Coulombic

scattering were obtained from a first-principles calculation of the respective

terms. The total model was obtained via a Matthiessen’s rule summation of the

three terms.

2. It was demonstrated that the new model reproduced all the properties of the

universal and the generalized mobility curve.

3. The model was formulated in local form to exploit numerical properties of

moment-based device simulators.

6.1.3 A Unified Model for LDD MOSFETs

1. It was demonstrated through coupled 2D process and device simulations that in

deep submicron LDD MOSFETs, extrinsic resistance has become comparable

to channel resistance. Hence, accurate simulations require mobility models

valid in both regions.

2. A physically-based semi-empirical local mobility model for inversion and

accumulation layer electrons was presented that accurately reproduced the I-V

characteristics of MOSFETs down to 0.25µm gate lengths.

3. A systematic technique was presented for the calibration and validation of

mobility models that requires the independent extraction of contact resistance

from Kelvin test structures and effective oxide thickness from quasi-static C-V

measurements.

4. Finally, it was demonstrated that drift-diffusion device simulators can

accurately model the saturation region characteristics of MOSFETs down to

0.25µm gate lengths provided well-calibrated and physically-based low-field

mobility models are used.
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6.2 Future Work

Based on the findings of this research, future work is suggested in the following areas:

1. The unified mobility model presented in Chapter 5 was implemented in the

drift-diffusion (DD) transport equation. It was recognized in the course of this

research that for gate lengths shorter than 0.25µm, the DD formulation failed

to give accurate results due to hot-carrier effects occurring in the channel. To

extend the model to shorter channel lengths, it is suggested that the low-field

mobility model be implemented in either an energy-transport or a

hydrodynamic formulation of carrier transport.

2. One consequence of MOSFET scaling — the emergence of Coulombic

scattering due to channel impurities — was considered in this research. The

other consequence is the emergence of quantum mechanical effects in the

channel due to thinner dielectrics. Significant error is introduced in charge

calculations if only classical equations are solved. The ad hoc approach used in

this thesis was to correct for this effect by extracting an effective oxide

thickness (see Section 5.6). Hence, a partial if not a full quantum treatment of

the inversion layer is required. The challenge would be to implement the

quantum mechanical effects in 2D device simulators such as PISCES without

adversely affecting the computation time.

3. In this thesis, existing mobility models were enhanced in two aspects:

inclusion of a physically-based model for Coulombic scattering, and

incorporation of a model for accumulation layer electrons. Since these two

effects have emerged in deep submicron MOSFETs, they need to be

incorporated in compact models for circuit simulation as well in order to

extend their range of applicability.
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